
Breadcrumbs to the Goal: Supervised Goal
Selection fromHuman in the loop

Feedback

a dissertation presented
by

Marcel Torné Villasevil
to

Institute of Applied Computational Sciences,
School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Master of Engineering
in the subject of

Computational Science and Engineering

Harvard University
Cambridge, Massachusetts

May 2023

©2023 –Marcel Torné Villasevil
all rights reserved.

Thesis advisor: Professor Pulkit Agrawal Marcel Torné Villasevil

Breadcrumbs to the Goal: Supervised Goal Selection from
Human in the loop Feedback

Abstract

Effective exploration is a major challenge in robot learning due to large state spaces. Exploration
is guided by relying on the generalization of the policy18, failing due to exploration collapsing, uni-
form frontier expansion29, causing over-exploration and hence being sample inefficient, and, di-
rected frontier expansion, which needs signal to guide in the right direction. Prior work has shown
the effectiveness of humans providing online feedback to direct exploration21. We propose a novel
algorithm, that is more feedback efficient than prior work and does not require for constant online
feedback for the policy to learn. The algorithm is called Frontier Expansion with Human Guidance
(FewHug) and learns a goal selector from human feedback on pair-wise state comparisons to guide
exploration during policy learning. We show the goal selector can still be trained using noisy hu-
man feedback and from a crowdsourced pool of 109 non-expert human annotators coming from
different backgrounds. Finally, FewHug succeeds in playing the famous game of Bandu, consist-
ing of assembling tower-like structures with blocks of different shapes, among other long horizon
navigation and manipulation tasks in both the real world and simulation.

iii

Contents

0 Introduction 1

1 RelatedWork 6
1.1 Exploration in Reinforcement Learning . 7
1.2 Goal-Conditioned Reinforcement Learning . 7
1.3 Reinforcement Learning fromHuman Preferences (RLHF) 8

2 Frontier ExpansionwithHumanGuidance 9
2.1 Problem Setup and Preliminaries . 10
2.2 Guiding Exploration in Goal-Conditioned RL with Human Feedback 11

3 Results of the Frontier ExpansionwithHumanGuidance Algorithm 17
3.1 Evaluation Domains . 18
3.2 Baseline Comparisons and EvaluationMetrics 18
3.3 Learning Goal-Conditioned Policies with Synthetic Human-in-the-Loop Feedback

in Simulation . 19
3.4 Learning Goal Conditioned Policies with Real Human Annotators 22
3.5 Learning Policies in the real world . 23
3.6 Ablation Analysis . 24

4 Conclusion 30

5 Contribution 32

Appendix A Benchmarks 34

Appendix B Implementation Details 39

Appendix C Further analysis of the baselines 43

Appendix D Further Analysis and Ablations 47

iv

D.1 Compatibility with Learning fromDemonstrations 47
D.2 Effect of frequency and amount of querying on the training 48
D.3 Effect of quality of the underlying reward function 50
D.4 Analysis of the Goal Selector learning . 51
D.5 Effect of terminal exploration in frontier expansion 52

Appendix E Details on theHuman Experiments 55
E.1 Human experiment on pusher and 2D navigation 55
E.2 Crowdsourced Human Experiment on the Kitchen 57

References 63

v

Listing of figures

1 Overview of FewHug. Our method consists of three parts. left: a goal selector is trained
querying a human annotator for binary preferences on achieved states. middle: dur-
ing trajectory rollouts for data collection, the goal selector is used to guide exploration.
right: the policy is learned using hindsight relabelling on the collected rollouts. . . 3

2 left: Comparison of exploration algorithms for goal-reaching, highlighting the benefits of di-
rected frontier expansion over inverse models and uniform frontier expansion. Aerial views
of floor plans with 9 rooms and multiple trajectories are shown. right: The schematic on the
right provides an overview of FewHug in a four room benchmark, demonstrating the direct
expansion of the frontier through human-guided goal selection. The area in green consists of
the visited states, the area in black consists of the explored frontier. 4

3.1 We test our method on six varied benchmarks in simulation and one in the real world.
Four rooms andMaze consist of 2D navigation task. Pusher with two walls,Kitchen,
Block Stacking, and Bandu are manipulation tasks, and Pick & Place is in the real
world.(for more details please read Appendix A). 18

3.2 Train success of FewHug on the proposed benchmarks compared to the baselines.
We show our method outperforms the rest of the baselines some of which cannot solve
the environment, converging to the oracle accuracy. Note the lexa-like benchmark is
only computed in the four rooms benchmark. 20

3.3 Learning Progress with Human-in-the-Loop Feedback for the kitchen (left), four rooms
navigation (middle) and pusher walls (right) for which we collected 1600, 660 and
2780 labels respectively. 22

3.4 World map depicting the country of residence of our crowdsourcing experiment. We
had a total of 109 annotators currently living in 13 different countries. See 3.1 for fur-
ther details. 23

3.5 Success rate curves for the real robot pick and place experiment (left) and the simu-
lated benchmarks: four rooms (middle) and pick and place (right) all using images
as state space, succeeding in all. Both goal selector and policies were taking images as
state space. For dealing with the stopping criteria in image spaces we use an image clas-
sifier trained using contrastive learning to determine which images represent close states.
. 24

vi

3.6 Analysis of FewHug on the four rooms benchmark. (top-left): Comparison in the
human feedback needed when learning a goal selector (Ours) or not (DDL), we see
learning a goal selector is more efficient by 40% when querying for feedback every 15
and 100 episodes, and 59% when querying every 500 episodes. (top-right): Effect of
adding Gaussian noise in the labels provided by the human. FewHug is robust to dif-
ferent amounts of added noise, however, as noise increases, so will the timesteps needed
to succeed. Noise is injected into the distance function used by the synthetic human
to provide labels. For reference, the distance between the initial state and the goal is
around 1.6. (bottom-left): Effect on the number of labels needed for a given query-
ing frequency, lower frequency is more feedback efficient, but comes at a cost of sam-
ple complexity as seen in Figure D.3. (bottom-right): Freezing the goal selector at dif-
ferent points in the learning of the policy and how long it takes to learn a successful
policy. We see that an earlier stop in the training leads to an increase in the timesteps
needed to succeed. FewHug is robust it is against incomplete goal selectors but takes
longer to find the solution if we stop earlier. 25

3.7 Evolution of the learned goal selector when the distance for the synthetic human has
a noise of 1. 26

3.8 Progress of goal selector learning in the four rooms environment as learning progresses
it gets closer to the target (oracle on the right). The purple area represents the visited
states by the agent at that point. We observe that the goal selector provides extrapo-
lation which will help the training with fewer annotations. 27

3.9 Analysis of FewHug. Left: we show it is robust to receiving adversarial labels, where
it can still get to the goal. 28

A.1 Benchmarks used to compare FewHug against the baselines. 35

C.1 Failure modes of exploration algorithms for goal-reaching. Inverse models (top) col-
lapses and does not discover the target room (second room at the top). Uniform fron-
tier expansion (middle) does reach the target room, but to get there it visits all possi-
ble rooms, since exploration is indiscriminate. Directed frontier expansion (bottom,
ours) reaches the target roommuch faster by leveraging human signal on direction.
Training epochs increase from left to right. Each subfigure is an aerial view of a floor
with 9 rooms, with multiple trajectories, each one in a different color. 44

C.2 Distance to the goal for each method on different benchmarks. We note that the LEXA-
like exploration strategy was only implemented on the four rooms benchmark. . . 46

C.3 Average distance and standard deviation across 4 seeds for the different baselines we
implemented to compare against HugRL. We see that HugRL consistently succeeds
(in bold) to solve all benchmarks when most other baselines do not. The oracle would
be the upper bound that we could hope to achieve, since in this case labels are provided
all the time, and the goal selector is substituted by a precise distance function.. . . 46

vii

D.1 The figure depicts the distance to the goal in the Four Rooms environment when us-
ing a policy pre-trained via Behaviour Cloning with 0, 2, 5, and 10 demonstrations,
respectively. We see that using BC on a small number of demonstrations helps to boost
the performance of our method. Also, notice that BC wouldn’t achieve success (dis-
tance< 0.05) in any of the cases due to compounding errors which leads to covari-
ant shift. However, HugRL solves these compounding errors within a small number
of steps. 48

D.2 On the right we show the number of steps needed to succeed in the four rooms bench-
mark depending on the number of comparisons queried per batch. On the left, we show
the number of labels needed to succeed, again depending on the amount of queries.
These experiments are done in the Four Rooms benchmark 49

D.3 On the left/right we show the number of labels/timesteps needed to succeed when vary-
ing the query frequency. 1, 15, 100, and 500 are the number of episodes between each
period of querying the human for annotations. 49

D.4 Effect of a simplified feedback given, where two states will only be labeled if their dis-
tance is greater than d, otherwise the synthetic human will return a ”don’t know” as
a label, which is ignored by our algorithm. 50

D.5 The goal selector learns and converges to a result close to the oracle (rightmost) as epochs
increase (left to right). We observe how this goal selector gets updated iteratively as the
frontier expands. Colder colors mean a lower reward for that state, whereas warmer
colors mean a higher reward for that state, in this case, this is equivalent to the distance
to the goal. 51

D.6 Analysis of the accuracy of the goal selector depending on the distance d between the
states given a certain number of queries sampled uniformly from the state space. . 52

D.7 Effect of the use of exploration after reaching the commanded goal on the performance 53
D.8 Effect of the use of exploration after reaching the commanded goal on the performance 53

E.1 Interfaces for maze navigation (left) and pusher walls (right) 56
E.2 Learning Progress with Human-in-the-Loop Feedback for maze navigation (left) and

pusher walls (right) . 56
E.3 Interface for the crowdsourcing experiment. We present two images to the user and

ask for their feedback on which one is closer to the target goal. The target goal is dis-
played when clicking on ”Show Task Description” together with additional informa-
tion about how to user the interface and was is expected from the user. 57

viii

Tomy family and friends who always believed in me,
to those who are giving me the opportunity to do something great.

ix

Acknowledgments

Thank you to everyone who has supported me along this journey. First of all, I want
to thank my parents for the education and all of the amazing opportunities they have provided me
with. I want to thank my parents and my sister for their inconditional support in my pursuits. My
friends have been an essential part of my journey so far, keeping me company and support through-
out. I also want to thank Prof. Abhishek Gupta for his mentorship, supervision, and for teaching
me so much during this last year. I also want to thank Prof. Pulkit Agrawal for his supervision and
for giving me the opportunity to be a part of his lab, which is the reason why I could work on this
great project I am so proud of. I want to thank my thesis committee, Prof. Pulkit Agrawal, Prof.
SusanMurphy, and Dr. Weiwei Pan. Finally, I want to thank my collaborators, my supervisors,
Max Balsells i Pamies (University of Washington), Tao Chen (MIT), and ZihanWang (University of
Washington), who have helped me bring this challenging project to light.

x

0
Introduction

How should we teach agents a new task? A general method is to provide agents with a reward func-

tion and employ reinforcement learning. However, not only does learning from rewards consume

large amounts of data, but in practice, the reward function often needs to be iteratively modified by

the human designer to avoid reward hacking or overcome exploration challenges. The loop of hu-

mans designing a reward function, observing the behavior of learned policy, and then re-designing

rewards to improve performance is tedious and data inefficient. To circumvent this problem, prior

1

work has explored different methods for learning from human feedback, such as preference-based

learning12, learning reward functions from language, learning from demonstrations, etc. However,

the prominent challenges are that humans can provide noisy feedback, may not know the optimal

solution to the task at hand and some approaches require large amounts of human feedback (e.g.,

DAGGER35).

If the agent was better at autonomously exploring its environment, it could learn from a sparse

reward function that is easier to design and thus be less reliant on humans designing and iterating

over detailed reward functions providing dense reward supervision. Several exploration strategies

exist that incentivize the agent to visit novel states and have led to impressive performance gains in

sparse reward scenarios. These strategies function by either expanding the frontier of states visited

by the agent or explicitly reward the agent for visiting novel-states. As such it is possible that while

maximizing novelty, the agent can get lost: blindly exploring new states may not aid the agent in

solving the desired task. E.g., suppose one is visiting a new city, but doesn’t has access to a city map

and needs to get to a landmark. If the person explores by walking on all roads of a city, it can take

forever to reach the landmark. On the other hand, if the person got guidance from a city dweller,

she could explore in a directed manner and quickly reach the destination.

Our desiderata is a method for learning complex long-horizon tasks that is not overly reliant on

human feedback and is robust to noise in human supervision. Instead of solely relying on human

feedback or novelty-seeking exploration, a methodology that efficiently leverages both these learn-

ing mechanisms can mitigate the drawbacks of each individual method. Superior exploration can

reduce the need for human feedback and on the other hand, human feedback can prevent an ex-

ploring agent to get lost. The question, therefore, is how should human feedback and an agent’s

self-exploration be combined?

To be more precise, we require our system to meet four criteria.

• Minimal human feedback (minimal)

2

Figure 1: Overview of FewHug. Our method consists of three parts. left: a goal selector is trained querying a human
annotator for binary preferences on achieved states. middle: during trajectory rollouts for data collection, the goal
selector is used to guide exploration. right: the policy is learned using hindsight relabelling on the collected rollouts.

• Feedback should not need to be provided online, but asynchronously instead (asynchronous)

• The system should be robust to noisy and multimodal human feedback (noisy)

Conditionsminima and asynchronous are there to reduce the burden on the supervisor. Collect-

ing large scale crowdsourced data is challenging since human preferences can be noisy and multi-

modal, due to difference in preferences. Hence the importance of the noisy condition. Satisfying

the 3 conditions allowed us to train an agent to solve a long-horizon task collaboratively, among 109

annotators across the globe, with less than two minutes of labelling per person.

Our proposed algorithm, Frontier Expansion with Human Guidance (FewHug), leverages hu-

man feedback to guide the directed selection of which state to start exploring from. This encourages

exploration in the directions that are important while ignoring irrelevant directions. FewHug solic-

its binary preference comparisons between visited states, and asks the human annotator for which

one of the two is closer to the goal. To make more efficient use of the human feedback (minimal),

we use the annotations not to directly select the goal21 but instead to train an approximate model

of state-goal distances, the goal selector. The goal selector is used to bias goal sampling during explo-

3

Figure 2: left: Comparison of exploration algorithms for goal‐reaching, highlighting the benefits of directed frontier
expansion over inverse models and uniform frontier expansion. Aerial views of floor plans with 9 rooms and multiple
trajectories are shown. right: The schematic on the right provides an overview of FewHug in a four room benchmark,
demonstrating the direct expansion of the frontier through human‐guided goal selection. The area in green consists of
the visited states, the area in black consists of the explored frontier.

ration by selecting with higher probability the closest visited states to the goals as exploration goals.

The policy explores by revisiting these achieved states and subsequently expanding the frontier of

visited states towards the true goal. The data collected during this exploration is relabeled in hind-

sight and used for self-supervised goal-conditioned policy learning 18 without requiring the human

supervisor to be present. This allows humans to provide feedback asynchronously and infrequently,

with the agent relying on self-supervision for a bulk of policy learning (asynchronous). By provid-

ing these comparisons, humans are able to essentially “drop breadcrumbs”, incrementally guiding

agents to reach distant goals, as shown in Fig 3.1. Finally, we note that compared to previous RLHF

methods11 where the human feedback is converted into a reward function and has a direct effect on

the policy update, in FewHug the human feedback has only an effect on the direction of frontier

expansion. In the presence of noisy human feedback this will degrade the effectiveness of the explo-

ration. However, since the the policy learning relies on self-supervision its update remains disentan-

4

gled from the human feedback and makes the policy learning more robust to noisy and misspecified

human feedback (noisy).

Overall, this work presents the following contributions:

Guided Frontier Expansion from minimal Human Feedback: We guide exploration in policy

learning using a parametric goal selector learned from human preferences, which is more efficient

use of human feedback than using this directly.

Method suited for large-scale crowdsourced human-feedback data collection for policy

learning: We show FewHug scales to collecting data from 109 non-expert annotators across the

world.

Method suitable for real-world policy learning: We show FewHug can learn policies in the

real world because of its effective frontier expansion, the sample efficiency of the policy learning

algorithm and its compatibility with pretraining from trajectory demonstrations.

5

1
RelatedWork

Ourwork is at the intersection of three different fields – exploration in reinforce-

ment learning, goal-conditioned reinforcement learning, and reinforcement learning from human

preferences. Next, we will give an overview of each one of these subfields with the drawbacks of

current work in each area and how FewHug either builds or improves upon concepts from the

mentioned fields.

6

1.1 Exploration in Reinforcement Learning

Our work can naturally be connected to the problem of exploration in RL. While exploration is a

widely studied subfield in reinforcement learning 8,33,4,29,7,15, this is typically concerned with ei-

ther the exploration-exploitation tradeoff 3 or maximizing state coverage 4,8,29, as opposed to our

goal of performing targeted exploration informed by human feedback. Particularly related to our

work is Go-Explore 15, a paradigm for exploration that aims to maintain a “frontier” for state ex-

pansion, that gradually expands to maximize state coverage. However, as seen in Figure 2, novelty-

based exploration methods suffer from overexplorationmaking it sample inefficient. Moreover, self-

supervision techniques such as hindsight relabeling 1,18,28 have been proposed to get around the

challenge of exploration for these problems. By learning goal-reaching behavior in hindsight for

goals that were actually reached, these methods obtain dense supervision, which can aid with ex-

ploration through policy generalization across goals. These methods on the other side, suffer from

underexploration due to the policy collapsing. Hence, the failures of prior work by overexploration

and underexploration suggest we need a way to encourage self-supervised policy learning techniques

to explore in directedways, as shown in 2.

1.2 Goal-Conditioned Reinforcement Learning

Goal-conditioned RL algorithms26,18,28,1,25,Kaelbling are multi-task RLmethods where various tasks

are defined as reaching different goal states. A number of different approaches have been proposed

for goal-conditioned RL - learning with hindsight relabeling 1,14,25,Kaelbling, learning latent spaces for

reward assignment 32,34, learning dynamical distances 21,16 and goal conditioned imitation learning

19,28,18,31. While these algorithms are able to solve tasks with simple exploration, they can struggle

with tasks with complex sequential nature. In contrast, our work shows the ability to solve sequen-

tial goal-reaching problems, just using binary human-in-the-loop comparisons for guidance.

7

Most closely related to our work is the paradigm introduced in Hartikainen et al. 21 . In Har-

tikainen et al. 21 , a human supervisor occasionally selects states to explore, which, when combined

with self-supervised Q-learning, can solve goal-conditioned RL problems. However, this brings

an inefficient usage of human feedback, we show learning a parametric goal selector reduces the

amount of human labels needed by 58% 3.6. Moreover, in this line of work exploration is limited

to the particular state selected by the human, whereas in FewHug, the exploration frontier can con-

tinue expanding using the generalization of the learned goal-selection model 3.8.

1.3 Reinforcement Learning fromHuman Preferences (RLHF)

RLHF represents a significant breakthrough in the field of language models by substantially im-

proving policy alignment compared to supervised methods ? . In the robotics literature, human in

the loop RL is a well-explored concept, with various interfaces ranging from preferences 11,5,6,24 to

scalar rewards 23, language based corrections 37, binary right/wrong signals 10 and even sketching

out rewards 9. Many of these techniques learn how to ground human interfaces into a scalar reward

signal that can then be used to guide RL in the single task setting 11,5,6. A major focus of several of

the prior works 6,5 has been on how to actively propose points to be labeled, reducing the burden

on human supervisors. In this work, we take a complementary view and show that by considering

human feedback in a self-supervised policy learning setting, the human effort is naturally reduced

since much of the burden can be placed on self-supervision. Moreover, the self-supervision allows

FewHug to show increased robustness to misspecified human feedback.

8

2
Frontier Expansion with Human Guidance

We propose a new algorithm that leverages human feedback to guide frontier

expansion in policy learning, called FewHug: Frontier ExpansionwithHuman

Guidance. Next, we will set up the framework in which we are working, giving the necessary def-

initions and defining the mathematical symbols that we use. Finally, we will present FewHug in

detail including each module that form this.

9

2.1 Problem Setup and Preliminaries

The work solves goal-reaching tasks by using goal-conditioned policy learning methods. The goal-

reaching problem is characterized by the tuple ⟨S,A, T , ρ(s0),T, p(g)⟩, adopting the standard

MDP notation with p(g) being the distribution over goal states g ∈ S that the agent is tasked

with reaching. We assume sampling access to p(g). We aim to find a stationary goal-conditioned

policy π(·|s, g): S × S → Δ(A), where Δ(A) is the probability simplex over the action space.

We will say that a goal is achieved if the agent has reached the goal at the end of the episode (or is

within ε distance of the goal). The learning problem can be characterized as that of learning a goal-

conditioned policy that maximizes the likelihood of reaching the goal π ← argmaxπ J(π) =

Eg∼p(g)
[
Pπg (sT = g)

]
.

Self-Supervised Goal-conditioned Policy Learning: Goal-conditioned Reinforcement Learn-

ing methods approach this problem using the reward function rg(s) = 1(s = g), defining a sparse

reward problem: π ← argmaxπ Eτ∼π(·|s,g),g∼p(g)

[∑H
t=1 γtrg(st)

]
. This problem can be difficult

to solve with typical reinforcement learning algorithms20,36,17 because the training process is largely

devoid of learning signals.

To circumvent this challenge, we can exploit the structure of the goal-reaching problem using

the hindsight relabeling technique Kaelbling,2. Hindsight relabeling leverages the insight that tran-

sitions that may be suboptimal for reaching ”commanded” goals g, may be optimal in hindsight

had the actually reached states sT been chosen as goals. This allows us to relabel a transition tuple

(s, a, s′, g, rg(s)), with a hindsight tuple (s, a, s′, g′, r′g(s)), where g′ can be arbitrary goals chosen in

hindsight. When g′ is chosen to be states s actually visited along a trajectory, the reward function

rs(s) = 1 provides a dense reward signal for reaching different goals g = s, which can be used to

supervise an off-policy RL algorithm 2.

Several prior works 18 circumvent RL, instead directly leveraging supervised learning techniques

10

for goal-conditioned policy learning. In particular, by repeatedly applying the principle of hindsight

relabeling, suboptimal trajectory data can be converted into optimal data for supervised learning.

Given a sampled trajectory (s0, a0, . . . , sH, aH) obtained by executing the policy π(·|s, g) for a com-

manded goal g ∼ p(g), hindsight relabeling allows for the conversion of a suboptimal dataset for

goals g ∼ p(g) into an optimal dataset for goals g ∼ pπ(sH) that were reached by the policy (2.2).

This relabeled optimal dataset can then be used for supervised learning:

JGCSL(π) = Eτ∼Eg[πold(·|g)]

[T∑
t=0

log π(at|st,G(τ))

]
(2.1)

This process can be repeated, iterating between collecting data, relabeling it, and performing super-

vised learning.

Dτ = {(st, at, g = st+h, h) : t, h > 0, t+ h ≤ T} (2.2)

2.2 Guiding Exploration in Goal-Conditioned RLwithHuman Feedback

In this work, we pose that it is relatively straightforward for human supervisors to guide an agent

throughout its learning by indicating which achieved states bring it closer to the goal as if we dropped

“breadcrumbs” to guide exploration of the agent. Doing so guides expansion of the frontier of vis-

ited states in particular directions, rather than simply encouraging indiscriminate frontier expan-

sion. While several methods have explored how to leverage human feedback to guide exploration

12,5, the bottleneck is the amount and quality of human supervision required. We show that in

human-in-the-loop policy learning, leveraging self-supervision via hindsight relabeling substantially

alleviates the burden on human supervisors in terms of frequency and quality of feedback needed.

In our proposed framework, FewHug, human feedback is used to bias which goal is commanded

during exploratory data collection while relying on self-supervised hindsight relabeling to learn from

this collected data. This allows for learning goal-reaching policies in an unbiased way while leverag-

11

Algorithm 1 FewHug: Frontier Expansion with Human Guidance for Goal-Conditioned
Policy Learning
1: Input: Human/Computational oracleH, goal distribution p(g)
2: Initialize policy π, goal selection model G, data bufferD
3: whileTrue do
4: Sample goal g ∼ p(g)
5: Dτ ← RolloutPolicyWithExploration(π,G, g,D)
6: Dτ′ ← RelabelTrajectory(Dτ) (Equation 2.1)
7: D ← D ∪D′

τ{Add relabelled trajectory to the buffer}
8: π ← TrainPolicy() (Equation 2.1)
9: Collect preference feedback fromH (Section 2.2.1)
10: G ← TrainGoalModel(D,H) (Equation 2.3)
11: end while

ing human supervision to guide exploration. FewHug learns goal-reaching policies by alternating

two phases - (1) exploration for data collection, informed by human feedback, and (2) hindsight

relabeled learning for policies, which we describe next.

2.2.1 Exploration: Guided Frontier Expansion for Data Collection via Bi-

nary Comparisons

Suppose the target goal distribution is p(g). Goal-reaching algorithms typically learn a policy us-

ing the data generated as follows: randomly sampling a goal g ∼ p(g), and then collecting data by

sampling actions from a stochastic goal-conditioned policy π(·|s, g). As discussed in Figure 2 and

in more detail in Appendix C.0.1, such a random goal sampling strategy often collapses to trivial

solutions or leads to lousy exploration. A natural solution to ensure exploration in this setting is to

do frontier expansion 15 - maintain a frontier of statesF that have been visited by the policy during

data collection and gradually expand the frontier by revisiting particular “states of interest” on the

frontier and performing expansion starting from these states. This has been shown to be an effective

12

Algorithm 2 RolloutPolicyWithExploration
1: Input: Target goal g, policy π, goal selection model G, data bufferD
2: D ← {}
3: gb ∼ softmax(G(s, g);∀s ∈ D){Select breadcrumb goal }
4: for i = 1, 2, . . . ,N do
5: Sample initial state s0
6: whileNOT stopped do
7: Sample action a ∼ π(a|s, gb), execute in environment
8: end while
9: Execute πrandom untilH timesteps for exploration
10: Add τ toD′

τ without redundant states
11: end for

tool 15 for indiscriminate exploration in reinforcement learning by simply choosing the “states of in-

terest” that have the lowest visitation counts in the frontier. In this work, we instead leverage binary

comparison feedback provided by a human supervisor to select which states to expand the frontier

from, providing more targeted exploration than novelty-based frontier expansion.

Frontier Expansion with GCSL:We build on the framework of goal-conditioned supervised

learning (Section 2.1) for self-supervised policy learning. In this case, the frontierF can simply be

the set of all states that have actually been visited thus far by the goal-conditioned policy (i.eF =

D, and we will use them interchangeably from here on), and revisiting a particular breadcrumb

state gb ∈ F can be done by executing the policy π(a|s, gb) in the environment sequentially until

the desired goal gb is reached. This can be accomplished with high probability for states that have

already been seen since the policy is trained via hindsight-relabeled supervised learning 18. Frontier

expansion is performed by executing random exploration from the reached state gb, and adding

the collected data to the buffers, as shown in Fig 2. This process can then be repeated to continue

exploring to collect data and train the policy to reach further states.

Learning State-Goal Distances from Binary Comparisons: We propose a simple interface

13

between the human and the algorithm, we simply rely on the human supervisor to provide binary

comparisons of which state-goal pairs are closer than others. As we will describe next, these com-

parisons can be used to learn a parametricmodel of distances between states and goals. This model

can then be used for the frontier goal selection in Algorithm 1, even in the absence of a human con-

stantly supervising the system.

EveryK episodes, we display a human labeler a triplet of goal g, a first comparison state s1, and a

second comparison state s2. The human labeler must provide a comparison of which state amongst

{s1, s2} is closer to the goal g. As studied in a number of prior works 11,6,5, these “binary compar-

isons” can be used to train an unnormalized estimate of distances fθ(s, g) by leveraging the Luce-

Shepard rule27:

max
θ

∑
1(s1 > s2|g) log

exp fθ(s1, g)
exp fθ(s1, g) + exp fθ(s2, g)

+

(1− 1(s1 > s2|g)) log
exp fθ(s2, g)

exp fθ(s1, g) + exp fθ(s2, g)

(2.3)

This objective encourages states s closer to particular goals g to have smaller fθ(s, g).

Using Learned State-Goal Distances for Directed Frontier Expansion: The unnormalized

estimate of distance fθ(s, g) can be used to select which breadcrumbs gb to command for frontier

expansion during exploration, by sampling breadcrumbs in proportion to their negated exponential

distance to goal, exp(−fθ(s, g)). Intuitively this encourages greater frontier expansion towards states

that have a lower estimated distance to the goal since these are more promising directions to explore

in, as indicated by the human-provided comparisons.

gb ∼ p(gb|g); p(gb|g) =
exp fθ(gb, g)∑
g′∈D exp fθ(g′, g)

(2.4)

whereD represents the set of all reached goals. This softmax sampling ensures that local errors

14

in the reward model are smoothed out, making the algorithm resilient to misspecification. Once

the commanded state gb is reached, the frontier can then be expanded by subsequently performing

several steps of random sampling from an exploratory distribution such as the uniform distribution

U .

It is important to note here that the parametric reward model can ensure continued expansion

of the frontier even when a human supervisor is not present. This reduces the burden on a human

supervisor since they can provide comparisons asynchronously and infrequently rather than con-

stantly being in the loop as is common in prior work 11,10.

2.2.2 Policy Learning: Hindsight Relabeled Learning for Goal Conditioned

Policies

Given the exploratory data collected by guided frontier expansion in Section 2.2.1, we can lever-

age a simple supervised learning scheme, building on 18 for goal-conditioned policy learning. Let

us assume access to trajectories τ = {s0, a0, s1, s2, . . . , sT, aT}Ni=1 obtained from guided frontier

expansion (Algorithm 2, Equation 2.4). Given these potentially “sub-optimal” trajectories, we can

perform self-supervised hindsight relabeling as in 18 to construct a dataset of optimal tuples Eq. 2.2.

Dτ can be treated as optimal. These can then simply be used for supervised learning of policy

π(·|s, g)with standard maximum likelihood learningmaxπ E(s,a,g)∼Dτ [log π(a|s, g)].

As policy learning continues improving, the learned policy can be deployed to solve an expanding

set of goals, eventually encompassing the desired goal distribution.

The important thing to note here is that since the policy learning is completely self-supervised,

FewHug can continue learning meaningful behavior even in the absence of constant human super-

vision and even in the presence ofmisspecified human supervision, making it far more resilient and

practical for use in human-in-the-loop reinforcement learning.

15

The overall pseudocode of FewHug is shown in Algorithm 1 and we refer the reader to the Ap-

pendix for full consideration of practical implementation details.

16

3
Results of the Frontier Expansion with

Human Guidance Algorithm

In this work, we show that FewHug can learn to successfully achieve long-horizon tasks, and tasks

with large combinatorial exploration spaces through little human supervision. To demonstrate these

experimentally, we test on several goal-reaching domains in simulation in the MuJoCo38 and Py-

Bullet13 simulators as well as real-robot experiments and experiments with both synthetic and real

17

human annotations.

3.1 Evaluation Domains

Kitchen MazePusher two wallsBandu Four RoomsBlock stacking Pick & Place

Figure 3.1: We test our method on six varied benchmarks in simulation and one in the real world. Four rooms andMaze
consist of 2D navigation task. Pusher with two walls, Kitchen, Block Stacking, and Bandu are manipulation tasks, and
Pick & Place is in the real world.(for more details please read Appendix A).

We evaluate FewHug on a variety of benchmarks presented in Figure 3.1. For further details on

the domains, such as their computational oracle distance models and more, we refer the reader to

Appendix A.

3.2 Baseline Comparisons and EvaluationMetrics

We compare FewHug to relevant baselines from prior work. These baselines are chosen to compare

FewHug with methods that perform pure exploration, hindsight relabeling, and human preferences

without being goal conditioned to highlight the benefits of combining goal-driven self-supervision

with human-in-the-loop exploration guidance.

1. GCSL:We compare with the iterative supervised learning algorithm for goal-reaching intro-

duced in 18, consisting of hindsight relabeling without additional exploration.

2. Learning from Human Preferences: We consider the technique introduced in 11, which

learns a goal-agnostic reward model using binary cross-entropy. This learned reward is then

combined with an on-policy RL algorithm36 to learn the policy.

18

3. DDL:Dynamical Distance Learning21 proposes a method to learn a goal-conditioned re-

ward function by regressing on the time distance between states achieved in the same trajec-

tory. A human synchronously provides preferences on which state brings the agent closest

to the goal, note that no goal selector is being learned. The policy is then trained to maximize

the learned reward to get to this selected state.

4. Go-Explore/LEXA:We compared with a version of goal-reaching with indiscriminate ex-

ploration. In particular, we perform frontier goal selection by identifying goals with the low-

est densities. The policy returns to these states and perform random exploration from there.

This is equivalent to performing indiscriminate exploration.

5. Proximal Policy Optimization: We compare with an on-policy algorithm 36 with both a

standard sparse and dense reward to directly optimize the goal-reaching objective.

6. Behavior Cloning: Supervised learning on a batch of expert trajectories. In our experiments

we use 5 expert trajectories.

7. Behavior Cloning + Ours: We pretrain the policy using imitation learning and we warm

start our goal selector by training it from the expert trajectories. Given two random states in

the same expert trajectory we add them into the training data for the goal selector, setting the

state further in time as closest to the goal.

3.3 Learning Goal-Conditioned Policies with Synthetic Human-in-the-Loop

Feedback in Simulation

We consider goal-reaching problems in the six simulation domains shown in Fig 3.1. These are do-

mains with non-trivial exploration challenges —the agents must navigate around walls, sequence

multiple behaviors and purely random exploration is unlikely to succeed. We evaluate FewHug

19

0 50k 100k 150k 200k 250k
0

0.5

1

1.5

2

2.5

3

3.5

4
Bandu

Number of steps

S
uc

ce
ss

 R
at

io

0 10k 20k 30k 40k 50k 60k 70k 80k
0

0.5

1

1.5

2

2.5

3
Block Stacking

Number of steps

B
lo

ck
s

S
ta

ck
ed

0 100k 200k 300k 400k 500k
0

0.2

0.4

0.6

0.8

1
Four Rooms

Number of steps

S
uc

ce
ss

 R
at

io

0 0.2M 0.4M 0.6M 0.8M 1M
0

0.2

0.4

0.6

0.8

1
Pusher with walls

Number of steps

S
uc

ce
ss

 R
at

io

0 0.5M 1M 1.5M 2M
0

0.2

0.4

0.6

0.8

1
Maze

Number of steps

S
uc

ce
ss

 R
at

io

0 1M 2M 3M 4M 5M 6M
0

0.5

1

1.5

2

2.5

3
Kitchen

Number of steps

Ta
sk

s
C

om
pl

et
ed

BC Inverse models Ours Human PreferencesPPO (dense)

BC + Ours Oracle DDL LEXA-likePPO (sparce)

Figure 3.2: Train success of FewHug on the proposed benchmarks compared to the baselines. We show our method
outperforms the rest of the baselines some of which cannot solve the environment, converging to the oracle accuracy.
Note the lexa‐like benchmark is only computed in the four rooms benchmark.

compared to the baselines described in Section 3.2 on these domains . We report the percentage of

goals reached successfully in Fig 3.2 as learning progresses.

It is clear from Fig 3.2, that guiding exploration using human feedback is significantly better

than techniques that perform purely exploration15,29 or purely hindsight relabeling18,1, on-policy

reinforcement learning36 and even (non-goal conditioned) learning from human preferences11.

FewHug performs directed frontier expansion, which in high dimensional state spaces will explore

much more efficiently than indiscriminate exploration methods like LEXA. On the other hand,

methods like GCSL and HER do not explicitly expand the frontier but instead purely rely on policy

generalization and stochasticity to perform exploration. This can fail in long-horizon task domains

like the ones in Fig 3.1. Goal-conditioned reinforcement learning methods with PPO do not expe-

rience enough reward signals to actually learn directed behavior. And lastly, learning from human

preferences without any goal conditioning struggles with learning complex behaviors using PPO

and a non-stationary reward function.

20

The oracle line corresponds to our method without learning a goal selector, meaning that the

closest achieved goal is always being commanded. The ours line corresponds to learning the goal

selector to select the goal to expand. From Fig 3.2, we see that the learned model performs slightly

worse than the oracle in some domains, but is largely comparable in most domains.

Start Pusher Walls Reaches puck Moves puck around
first obstacle

Moves puck around
second obstacle

Puck reaches goal

Start Kitchen

Start configuration

Reaches slider

Grasp blue block Drops blue block on
bottom left corner

Grasp green block Drops green block on
bottom right corner

Opens slider Opens microwave Opens cabinet

Start Configuration
 of Pieces

Red piece is place
and picks blue piece

Red and blue pieces
placed, picks green iiece

Places green piece on
top of blue and red pieces

Places final piece and
reaches goal configuration

Start Block Stacking Picks red block Drops red on target
and picks green

Stacks green and
picks blue

Three blocks stacked

Block
Stacking

Kitchen

Real Robot
Pick&Place

Bandu

Pushers
with walls

21

3.4 Learning Goal Conditioned Policies with Real Human Annotators

0 0.5M 1M 1.5M 2M 2.5M
0

0.5

1

1.5

2

2.5

3

Ours (human + 5 demos)
Ours (crowdsource + 5 demos)
Ours (synthetic + 5 demos)

Kitchen (Human Experiment)

Number of steps

S
uc

ce
ss

 R
at

io

0 20k 40k 60k 80k 100k 120k 140k
0

0.2

0.4

0.6

0.8

1

Ours (human)
Human Preferences (human)
Ours (synthetic)

Four Rooms (Human Experiment)

Number of steps

S
uc

ce
ss

 R
at

io

0 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M
0

0.2

0.4

0.6

0.8

1
Pusher (Human Experiment)

Number of steps

S
uc

ce
ss

 R
at

io

Figure 3.3: Learning Progress with Human‐in‐the‐Loop Feedback for the kitchen (left), four rooms navigation (middle)
and pusher walls (right) for which we collected 1600, 660 and 2780 labels respectively.

The previous experiments were done using synthetic human annotations without any added

noise. However, the goal of our work is to show that we can learn these goal selectors from real hu-

man feedback, that can be noisy and multimodal. We start with experiments on three of the simu-

lations tasks: the kitchen, pusher and four rooms, with 2 to 6 annotators per experiment. In Fig-

ure E.2, we show how we succeed to learn successful policies from scratch on both the pusher and

the four rooms experiment (Ours (human) line). We collected 660 labels for the four rooms envi-

ronment from 2 different annotators and 2780 labels for the pusher from 4 different annotators.

Furthermore, we tried training a policy on the four rooms environment with the same number of

labels as for FewHug, however, as we see it did not work. Furthermore, on the kitchen we pretrained

the policy with some demos to warm start and train our policy faster. We successfully trained a pol-

icy from 6 annotators and a total of 1600 labels. These results show how FewHug can successfully

working from real human preferences.

FewHug is capable to do even more, for this reason, we ran a crowd-sourcing experiment using

a platform that we designed from scratch specifically for this project, but which could be reused for

any algorithms requesting human preferences, we refer the reader Fig E.1 to see the interface. We ran

the experiment during 12 hours with data from 109 annotators across the world, as seen in 3.4. In

table 3.1 and E.1, we provide more details about the demographics of our annotators. We spanned

22

the around all over the world, having annotators leaving in 13 different countries, with ages ranging

from 18 to 65+ and a variety of academic backgrounds. Each annotator could provide labels at any

time during the day, our recommendation was to provide 30 labels, which took on average less than

2 minutes of their time. We collected a total of 2678 labels for this crowd-sourcing experiment.

Figure 3.4: World map depicting the country of residence of our crowdsourcing experiment. We had a total of 109
annotators currently living in 13 different countries. See 3.1 for further details.

3.5 Learning Policies in the real world

FewHug’s qualities of being robust to noisy feedback and requiringminimal and asynchronous

human supervision together with its self-supervised policy learning nature and the capability to be

pretrained from trajectory demonstrations makes it suitable for learning in the real world. Hence,

we show this in practice, learning a policy for pick and place with the LoCoBot hardware30. Firstly,

the state space becomes image space, instead of point space as was used in the previous experiment.

In Figure 3.5, we show FewHug is compatible with working from image space in two of the simula-

23

tion tasks, the four room navigation and the block stacking. In Figure 3.5, we also show the success

curve when learning the task in the real world. The setup consisted of images as state space, the ac-

tion space was the continuous x,y position where we had to execute the grasp. We collected 132

labels and the robot was trained for around 30 hours.

Block stakingPick & place in the real world

0 0.2M 0.4M 0.6M 0.8M 1M
0

0.2

0.4

0.6

0.8

1

Number of steps

D
is

ta
nc

e
to

 g
oa

l

Four Rooms

Figure 3.5: Success rate curves for the real robot pick and place experiment (left) and the simulated benchmarks: four
rooms (middle) and pick and place (right) all using images as state space, succeeding in all. Both goal selector and poli‐
cies were taking images as state space. For dealing with the stopping criteria in image spaces we use an image classifier
trained using contrastive learning to determine which images represent close states.

3.6 Ablation Analysis

Lastly, we conducted a number of quantitative analysis experiments to show further benefits of

FewHug.

Learning a goal selector is more feedback efficient than directly using the hu-

man feedback In figure 3.6 (top-left) we show a comparison of the number of labels needed

to succeed when using a parametric goal selector (Ours) against directly using the goal selected by

the human (DDL). We show the comparison between different frequencies of human querying.

15, 100, 500 episodes are the number of episodes we wait before querying the human annotator

for more labels. We observe that when learning a goal selector, we obtain a reduction in the num-

ber of labels needed of 40% when querying every 15 or 100 episodes and a reduction of 59% when

querying every 500 episodes. Furthermore, if we don’t learn this parametric model, with low fre-

24

0 2k 4k 6k 8k 10k
0

0.2

0.4

0.6

0.8

1

1
15
100
500

Ablations on frequency of annotations

Number of labels

S
uc

ce
ss

 R
at

io

Ours
0

50k

100k

150k

200k

250k

Noise
0
0.05
0.1
0.3
1

Time to succes for different injected noise on labels

Method

Ti
m

es
te

p
of

 s
uc

ce
ss

Oracle no stopping final room third room second room first room
0

100k

200k

300k

400k

500k

600k

700k

Analysis Learning a Policy from an Incomplete Goal Selector

Stopping Moment

Ti
m

es
te

p
of

 s
uc

ce
ss

15 episodes 100 episodes 500 episodes
0

100

200

300

400

500

Method
DDL-like
Ours

Increased feedback efficiency
 by learning a goal selector

Frequency

La
be

ls
 to

 s
uc

ce
ed

episode

episodes

episodes

episodes

Querying
every

Figure 3.6: Analysis of FewHug on the four rooms benchmark. (top‐left): Comparison in the human feedback needed
when learning a goal selector (Ours) or not (DDL), we see learning a goal selector is more efficient by 40% when query‐
ing for feedback every 15 and 100 episodes, and 59% when querying every 500 episodes. (top‐right): Effect of adding
Gaussian noise in the labels provided by the human. FewHug is robust to different amounts of added noise, however,
as noise increases, so will the timesteps needed to succeed. Noise is injected into the distance function used by the
synthetic human to provide labels. For reference, the distance between the initial state and the goal is around 1.6.
(bottom‐left): Effect on the number of labels needed for a given querying frequency, lower frequency is more feedback
efficient, but comes at a cost of sample complexity as seen in Figure D.3. (bottom‐right): Freezing the goal selector at
different points in the learning of the policy and how long it takes to learn a successful policy. We see that an earlier
stop in the training leads to an increase in the timesteps needed to succeed. FewHug is robust it is against incomplete
goal selectors but takes longer to find the solution if we stop earlier.

25

quencies we might not learn a successful policy, as happens for the non-parametric version at 100,

500 episodes of frequency. When using the non-parametric goal selector (DDL) not all trials suc-

ceed, for querying every 100 episodes, 2 seeds out of 4 fail and for 500 episodes between querying 3

out of the 4 fail, which is another reason why parametric goal selectors are better.

FewHug is robust to noisy labels Increasing the noise in human labels leads to an increase

in the number of timesteps needed to for the policy to learn to achieve the goal, as seen in Figure 3.6.

However, this does not decrease the accuracy of the resulting policy. Increased noise in the labels

makes exploration become less directed and closer to the uniform frontier expansion methods.

Having a closer look in Figure 3.7 at the shape of the reward function when large noise is added

to the feedback. We observe that the goal selector becomes less accurate compared to the one with

perfect feedback in Fig 3.8. However, FewHug still successfully reaches the goal. As we can see,

there are 3 modes in the final step (4th subfigure in 3.7). This means, the goals will be sampled most

frequently from these 3 modes, which will result in a less efficient frontier expansion, since only

one of the three modes is the target goal. However, since we are learning a goal-conditioned policy

through self-supervised learning this remains unaffected by this noise and will learn to go to the

three modes, one of which is our target location. This would not be the case for methods that use

this goal selector as a reward function to run model-free RL, due to its convergence to local maxima

without reaching the target goal.

Figure 3.7: Evolution of the learned goal selector when the distance for the synthetic human has a noise of 1.

26

FewHug can learnwhen no labels are provided. This property of FewHug is because

of the self-supervised learning used to train the policy but also a result of using a parametric goal

selector as compared to directly selecting goals of interest as done in 21, which will not have this ad-

vantage. From Figure D.5 we observe that a parametric goal selector has the capacity to generalize

while, by definition, a non-parametric goal selection 21 will not. Thereafter, using a parametric re-

ward model that has non-degenerate extrapolation can lead to significantly more frontier expansion.

In Figure 3.9 we show how our method succeeds in reaching the final goal room even if the goal se-

lector has stopped training when the agent enters the previous to the last room. Freezing the goal

selector at different points in the learning of the policy and how long it takes to learn a successful

policy. We see that an earlier stop in the training leads to an increase in the timesteps needed to suc-

ceed. However, even if we stop in the second room, our method is still very good at quickly finding a

successful policy, which shows how robust it is against incomplete goal selectors. This would not be

the case for methods that run RL on the learned reward functions (as DDL, and RL fromHuman

Preferences). The policy still succeeds thanks to the added random exploration, the self-supervised

nature of GCSL, and a small probability of sampling the final goal.

Figure 3.8: Progress of goal selector learning in the four rooms environment as learning progresses it gets closer to the
target (oracle on the right). The purple area represents the visited states by the agent at that point. We observe that the
goal selector provides extrapolation which will help the training with fewer annotations.

Querying the annotators for labels less frequently makes FewHugmore effi-

cient in terms of label efficiency. We observe in Figure 3.6 how with lower frequencies we

27

get fewer labels and we can leverage the generalization of the parametric goal selector to achieve the

task with fewer queries. Nevertheless, we note that this reduction in supervision comes at a cost of

more episodes needed to train the policy, see Figure D.3.

FewHug is robust to misleading labels. One of the main benefits of using hindsight rela-

beling to train the policy is that this self-supervised way of learning will allow the policy to continue

learning outside of the high-reward regions of the goal selector. A direct implication is that the pol-

icy can still learn to reach the goal even if the goal selector has been trained adversarially. Trained

adversarially means that wrong labels have been given, trying to lead the agent into the wrong places.

To prove this property, we train a goal selector with labels that misguide it to the room before the

final one. Even with this misleading goal selector, we observe in Figure 3.9, the agent still manages to

get to the goal room when commanded to.

0 20k 40k 60k 80k 100k
0

0.2

0.4

0.6

0.8

1

Oracle
Ours
Adversarial Labels
Human Preferences

Analysis with Adversarial Labels

Number of steps

S
uc

ce
ss

 R
at

io

Figure 3.9: Analysis of FewHug. Left: we show it is robust to receiving adversarial labels, where it can still get to the
goal.

28

Metric Percentage

Current country of Residence
USA 41.3% (45)
Spain 30.3% (33)
India 8.3% (9)
Germany 6.4% (7)
Canada 2.8% (3)
France 2.8% (3)
Singapore 1.8% (2)
China 1.8% (2)
Andorra 0.9% (1)
Austria 0.9% (1)
Ireland 0.9% (1)
Switzerland 0.9% (1)
United Kingdom 0.9% (1)
Prefer not to say 0% (0)

Gender
Male 58.7% (64)
Female 39.4% (43)
Non-binary 1.8% (2)
Prefer not to answer 0% (0)

Age group
18-24 48.6% (53)
25-34 24.8% (27)
35-44 7.3% (8)
45-54 11.0% (12)
55-64 7.3% (8)
65+ 0.9% (1)
Prefer not to answer 0% (0)

Education
Graduate or professional

degree
39.4% (43)

College degree 33.9% (37)
High school or some college 20.2% (22)
Other 12.8% (14))
Prefer not to say 2.8% (3)

Table 3.1: Demographics on the participants of the crowdsourced data collection experiment29

4
Conclusion

In this work, we introduced FewHug, a technique for solving goal-reaching problems with a chal-

lenging element of exploration by leveraging small amounts of human-in-the-loop feedback. We

show how binary human preferences can serve to guide goal sampling for goal-reaching problems,

leading to directed frontier expansion. In doing so, our proposed technique is able to not just per-

form indiscriminate exploration or rely on hindsight generalization. Instead, it is able to rely on bi-

nary human preferences to train a parametric model of state-goal distances, which can serve to guide

30

frontier expansion towards the goal. We show that this simple technique is able to solve difficult ex-

ploration problems for various control tasks in both the real world, learning on real hardware, and in

simulation. We additionally ran crowdsourcing experiments with more than 100 human annotators

living all over the world to solve the kitchen manipulation benchmark. Finally, we provide ablations

and analysis on the design decisions made in FewHug.

There are a number of directions for future work that are very exciting building on FewHug.

Firstly, extending to run harder tasks on real robots and in reset-free environments would be very

exciting.

31

5
Contribution

The work presented in this Master Thesis will be submitted as a conference paper to the Conference

on Neural Information Processing 2023. For which the author list is the following: Marcel Torné

Villasevil, Max Balsells i Pamies, ZihanWang, Tao Chen, Pulkit Agrawal, Abhishek Gupta. I am the

first author of this work, I worked on the algorithm, the experiments in simulation, the experiments

from human annotators, I developed the interface system and worked on the writing of the paper.

Max worked on adapting the algorithm to work from images as state space and on the real robot

32

experiments. Prof. Abhishek Gupta and Prof. Pulkit Agrawal were the main supervisors of the

work, contributing with ideas, helpful feedback and the writing. Finally, Zihan and Tao provided

insightful comments on the writing of the manuscript. Tao also supervised me along the project

providing helpful advice.

33

A
Benchmarks

In this section, we give more details on the benchmarks used to compare our method with the base-

lines. All of these benchmarks are variations of benchmarks presented in previous work. In gen-

eral, we have made them harder to showcase the benefits of our method. More concretely, for each

method, we will give an overview of the difficulties it has and we will present the reward function we

designed to provide synthetic labels in our experiments.

1. Four rooms (small 2D Navigation): We consider goal-reaching problems in a 2-D navi-

34

Kitchen MazePusher two wallsBandu Four RoomsBlock stacking Pick & Place

Figure A.1: Benchmarks used to compare FewHug against the baselines.

gation problem in a four rooms environment, shown in Fig A.1. The challenge in this en-

vironment is navigation through obstacles, which are unknown without exploration. The

agent is initialized in the bottom right room and the goal is sampled from the top right room.

The state observation of this environment is the absolute position of the agent in the world,

i.e. a vector (x, y), and the action space is discrete with 9 possible actions, encoding 8 direc-

tions of movement (parallel to the axis and diagonally), plus a non-move action. To solve this

benchmark the agent needs to traverse the two intermediate rooms to get to the target room,

traversing a total of four rooms. The reward function in this case is the shaped distance be-

tween the state and the goal. This benchmark is a modification of the benchmarks proposed

by18.

2. Maze (large 2DMaze Navigation): We consider a second 2-D navigation problem in a maze

environment. The additional challenge in this environment compared to the previous one

relies upon having a longer horizon (see Figure B.1). The agent is initialized in the green dot

and has to reach the red dot. The state space is the absolute position of the agent in the maze,

i.e. a vector (x, y), and the action space is the same as in the Four rooms one, i.e. discrete with

dimension 9. The reward function in this case is the shaped distance between the state and

the goal.

3. Pusher two walls: This is a robotic manipulation problem, where a Sawyer robotic arm

pushes an obstacle in an environment with multiple obstacles. The puck and arm start in the

35

configuration seen in Fig A.1. The task is considered successful if the robotic manipulator

brings the puck to the goal area, marked with a red dot. The state space of this environment

consists of the position of the puck and the position of the arm. The action space is the con-

trol of the position of the robotic arm. It is also a 9-dimensional discrete action space where

each one corresponds to a delta change in the position in 2D. This benchmark is a modifica-

tion of the benchmarks proposed by18. The reward function designed for this environment

is the following:

r = max(distance_puck_finger, 0.05) + distance_puck_goal

4. Sequential Kitchen Manipulation: This benchmark is a harder robotic manipulation task

where apart from being long horizon the agent needs to show three different skills to solve

the task. We operate a 7 DoF Franka robot arm in a simulated kitchen, manipulating differ-

ent cabinets, sliding doors, and other elements of the scene. The observation space consists

of the position of the end effector and its rotation together with the joint states of the target

objects. The action space consists in controlling the end effector position in 3D, we discretize

it so the dimension is 27, and the control of the gripper and rotation of the arm. In our eval-

uation, we consider tasks where the goal is to sequentially manipulate three elements in the

kitchen environment - the sliding cabinet, the microwave and the hinge cabinet to target

configurations. The reward function we use is the following:

r =

−distance(arm, hinge cabinet)− |hinge cabinet target joint - hinge cabinet current joint| , if slide cabinet and microwave opened

−distance(arm, microwave hinge)− |microwave target joint - microwave current joint| − bonus , if slide cabinet opened

−distance(arm, slide cabinet hinge)− |slide cabinet target joint - slide cabinet current joint| − 2bonus , otherwise
(A.1)

36

5. Block Stacking: This domain is another long horizon robotic manipulation task, we oper-

ate a 6 DoF UR5 robot arm with a suction gripper as an end effector in a simulated tabletop

configuration, stacking blocks. The observation space consists of the position of the end ef-

fector and the position of each block in 2D, and a bit indicating whether the hand is holding

a block. This is a continuous action space domain with dimension 2, where the agent will

predict a grasp position if it does not hold an object and a drop position if it is holding an

object. We consider the goal to be accomplished if the three blocs are stacked in the correct

order (red, green, blue) on the correct fixed place on the table. The reward function is the

following:

r =

−distance(arm, blue block) - distance(blue block, target goal) , if red and green block at position

−distance(arm, green block) - distance(green block, target goal)− bonus , if red block at position

−distance(arm, red block) - distance(red block, target goal)− 2bonus , otherwise
(A.2)

6. Bandu: This domain is very similar to the block stacking. We operate a 6 DoF UR5 robot

arm with a suction gripper as an end effector in a simulated tabletop configuration. The ob-

servation space consists of the position of the end effector and the position of each block in

2D, and a bit indicating whether the hand is holding a block. This is a continuous action

space domain with dimension 2, where the agent will predict a grasp position if it does not

hold an object and a drop position if it is holding an object. We consider the goal to be ac-

complished if the four blocs are stacked in the target configuration building the castle like

37

structure seen in Figure A.1. The reward function is the following:

r =

−distance(arm, yellow star) - distance(yellow star, target yellow star) , if all except star at position

−distance(arm, green block) - distance(blue green block, target green block)− bonus , if red and blue blocks at position

−distance(arm, blue triangle) - distance(blue triangle, target blue triangle)− 2bonus , if red cylinder at position

−distance(arm, red cylinder) - distance(red cylinder, target red cylinder)− 3− bonus , otherwise
(A.3)

More details about how these benchmarks were run, such as the number of episodes we ran the

benchmarks for, are presented in Section B.0.2

38

B
Implementation Details

B.0.1 Networks with Fourier Features

Seeing the complexity of our benchmarks, where we can have non-smooth reward landscapes for

the goal selector. For example, in the four rooms environment, between one side and the other of

the right rooms, the reward changes significantly and abruptly. Adding Fourier Features has been

shown to work well for fitting these landscapes39. For this reason, we used them in some of our

39

experiments, as detailed in Section B.0.2. More precisely, when used, we added an additional layer

with Fourier features of size 40 times the input dimension.

B.0.2 Training details

The details of the parameters with which the results have been obtained will be disclosed in this

section. In particular, Table B.1 depicts the parameters used for the different benchmarks, while

Table B.2 contains the hyperparameter configuration used for the different algorithms.

Four rooms Maze Pushing around Obstacles KitchenManipulation Block Stacking

Steps per trajectory 50 250 100 100 8

Label from last k steps 10 50 10 20 8

Table B.1: Benchmark‐related parameters

40

.

41

Parameter Value

Shared (to those that apply)
Optimize Adam
Discount factor (γ) 0.99
Reward model architecture MLP(256, 256)
Use Fourier in the reward

model
True

Buffer size reward model 1000
Steps per reward model

update
1000

GCSL, Oracle and Ours
Learning rate 5 · 10−4

Batch size 100
Policy architecture MLP (400, 600, 600, 300)
Steps per policy update 5000
Use Fourier in the policy

model
True

Buffer size rollout 1000
Max gradient norm 5
Last trajectories to be labeled 1000

Human preferences Same parame-
ters as36 plus/except

Learning rate 5 · 10−4

Batch size 100
Policy architecture MLP (256, 64)
Steps per policy update 5000
Use Fourier in the policy

model
False

Buffer size rollout 1000
Max gradient norm 5
Last trajectories to be labeled 1000

DDL
Learning rate 5 · 10−4

Batch size 256
Buffer Size 2 · 104
Policy architecture MLP (256, 256)
Steps per update 1000

PPO Same parameters as36 plus
Buffer size 8192
Policy architecture MLP (400, 600, 600, 300)

Table B.2: Hyperparameters setting for the algorithms

42

C
Further analysis of the baselines

C.0.1 Failure modes of exploration algorithms for goal-reaching

For the sake of concreteness, we will study two simple schemes from prior work on solving goal-

reaching problems—self-supervision via goal conditioned supervised learning18 (as described in

Section 2.1) and reinforcement learning with density based exploration29. Exploration in GCSL

relies on generalization of the policy across goals, while density based exploration rewards exploring

43

Figure C.1: Failure modes of exploration algorithms for goal‐reaching. Inverse models (top) collapses and does not dis‐
cover the target room (second room at the top). Uniform frontier expansion (middle) does reach the target room, but
to get there it visits all possible rooms, since exploration is indiscriminate. Directed frontier expansion (bottom, ours)
reaches the target room much faster by leveraging human signal on direction. Training epochs increase from left to right.
Each subfigure is an aerial view of a floor with 9 rooms, with multiple trajectories, each one in a different color.

the most novel states. We show these algorithms can fail in different ways for a simple maze envi-

ronment shown in Fig C.1, where the agent starts in the middle room and must reach goals com-

manded in the top middle room.

As shown in Fig C.1, GCSL exploration quickly collapses in the maze environment. This can

be understood by noticing that self-supervised training on goals in the bottom right corner room

or even the bottom left corner room does not extrapolate to the top right corner, where the com-

manded goals are. Instead of navigating the agent around the walls, the policy generalization sug-

gests that the agent simply go into the wall as shown in Fig C.1.

Exploration methods are meant to tackle this kind of degenerate exploration, by encouraging

visitation of less frequently visited goals at the “frontier” of visited states. When applied to the goal-

reaching problem, in Fig C.1, we see that while the exploration is not degenerate, exploration is in-

44

discriminate in that it explores both sides of the maze even though commanded goals are only down

one particular path. While this will eventually succeed, it incurs a significant cost of redundant ex-

ploration by going down redundant paths.

This suggests that frontier expansion is needed like exploration methods, but should ideally be

done in a directed way towards goals of interest. In Figure C.1 we see how this directed exploration

could be useful and reduce sample complexity, by removing the need for indiscriminate frontier

expansion. We show how a small amount of relatively cheap human feedback can be leveraged to

guide this exploration.

C.0.2 Detailed training curves

For some of the runs the plot of the success could be misleading, in the sense that, despite not

achieving the goal, the algorithms may still learn how to almost solve the task, or at least gained some

knowledge about how to approach it. Figure C.2 shows for each of the runs, the distance to the

goal, which corresponds to−rwhere r is the reward of the corresponding benchmark, as described

in Section A.

For example, by looking at Figure C.2, we can see that despite the fact that the Human Prefer-

ences wasn’t able to complete some of the tasks, such as Four Rooms, Pusher with walls or Maze, it

still got some insight on how to approach it, getting much closer to the goal than the other methods

that failed.

45

0 2M 4M 6M 8M 10M
0

2

4

6

8

10

12

Kitchen

Number of steps

D
is

ta
nc

e
to

 g
oa

l

BC Inverse models Ours Human PreferencesPPO (dense)

BC + Ours Oracle DDL LEXA-likePPO (sparce)

0 10k 20k 30k 40k 50k 60k 70k 80k 90k
0

1

2

3

4

5

6

7

Block Stacking

Number of steps

D
is

ta
nc

e
to

 g
oa

l

0 100k 200k 300k 400k 500k
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Four Rooms

Number of steps

D
is

ta
nc

e
to

 g
oa

l

0 0.2M 0.4M 0.6M 0.8M 1M
0

0.2

0.4

0.6

0.8

1

Pusher with walls

Number of steps

D
is

ta
nc

e
to

 g
oa

l

0 50k 100k 150k 200k 250k
0

2

4

6

8

10

12

Bandu

Number of steps

D
is

ta
nc

e
to

 g
oa

l

0 0.5M 1M 1.5M 2M
0

10

20

30

40

50

60
Maze

Number of steps

D
is

ta
nc

e
to

 g
oa

l

Figure C.2: Distance to the goal for each method on different benchmarks. We note that the LEXA‐like exploration
strategy was only implemented on the four rooms benchmark.

Benchmark Oracle Ours GCSL Human
Prefer-
ences

DDL PPO
(sparse)

PPO
(dense)

LEXA
style

4 rooms 0.02± 0.01 0.02± 0.00 1.15 ±
0.67

0.48 ±
0.39

0.45 ±
0.28

1.45 ±
0.13

0.05± 0.02 0.13 ±
0.18

Maze 0.4± 0.3 0.8± 0.3 29.6±2.2 18.5± 5.6 37.2±5.3 30.4±0.7 0.0± 0.2 -
Pusher 0.06± 0.00 0.11± 0.04 0.85 ±

0.11
0.26 ±
0.03

0.69 ±
0.06

0.72 ±
0.06

0.27 ±
0.00

-

Kitchen 2.0± 0.6 4.5± 1.1 34.9±0.3 5.5± 0.6 16.4±4.9 32.5±2.3 21.9±3.9 -
Stacking 0.1± 0.2 0.0± 0.0 4.1± 2.3 6.5± 0.1 6.6± 0.1 6.7± 0.0 6.6± 0.0 -

Figure C.3: Average distance and standard deviation across 4 seeds for the different baselines we implemented to compare against
HugRL. We see that HugRL consistently succeeds (in bold) to solve all benchmarks when most other baselines do not. The oracle would
be the upper bound that we could hope to achieve, since in this case labels are provided all the time, and the goal selector is substituted
by a precise distance function..

46

D
Further Analysis and Ablations

D.1 Compatibility with Learning fromDemonstrations

FewHug is compatible with Learning fromDemonstrations. To pretrain the policy we can initialize

the replay buffer with the expert trajectories and run several iterations of policy learning with hind-

sight relabelling on the expert trajectories. We can also pretrain the goal selector by taking random

states from a single trajectory and labelling the state achieved later in time as being closer to the goal.

47

We also initialize the goal selector buffer with such tuples of achieved states and label and pretrain

the goal selector on this. In Figure D.1, we show the effect that adding more demonstrations has on

the overall training of the policy. We see that more demonstrations lead to a better start of the policy

at the 0th timestep. We also observe that using FewHug we can fine tune and improve considerably

the performance of the policy.

0 20k 40k 60k 80k 100k
0

0.2

0.4

0.6

0.8

1

1.2

1.4

BC 0
BC 2
BC 5
BC 10

Four Rooms

Number of steps

D
is

ta
nc

e
to

 g
oa

l

Figure D.1: The figure depicts the distance to the goal in the Four Rooms environment when
using a policy pre‐trained via Behaviour Cloning with 0, 2, 5, and 10 demonstrations, respec‐
tively. We see that using BC on a small number of demonstrations helps to boost the perfor‐
mance of our method. Also, notice that BC wouldn’t achieve success (distance< 0.05) in any
of the cases due to compounding errors which leads to covariant shift. However, HugRL solves
these compounding errors within a small number of steps.

D.2 Effect of frequency and amount of querying on the training

We aim to understand how sensitive the reward model is to the frequency of human supervision.

In the four rooms domain, we ablate the frequency at which we query the human for feedback.

The results are depicted in Figure D.3. We observe a clear tradeoff between needing fewer labels to

succeed against needing more timesteps. Meaning that if we query more frequently, we will need

48

fewer timesteps to succeed and vice versa.

On the other side, we also try to understand howmuch feedback is needed every time we query

the human. In Figure D.2, we keep the querying frequency fixed and we vary the amount of feed-

back. We observe that we can go as low as 5 queries per batch, and the performance is similar to 20

and 100 labels. Showing that too many queries bring duplicated information to the goal selector

training and hence those annotations become useless. However, if we query too little, for example

providing 1 label, then this is not enough, degrading the performance significantly.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1
5
20
100

Ablations on the number of queries per batch

Number of labels

S
uc

ce
ss

 R
at

io

0 100k 200k 300k 400k 500k
0

0.2

0.4

0.6

0.8

1

1
5
20
100

Ablations on the number of queries per batch

Number of steps

S
uc

ce
ss

 R
at

io

Figure D.2: On the right we show the number of steps needed to succeed in the four rooms benchmark depending on
the number of comparisons queried per batch. On the left, we show the number of labels needed to succeed, again
depending on the amount of queries. These experiments are done in the Four Rooms benchmark

0 2k 4k 6k 8k 10k
0

0.2

0.4

0.6

0.8

1

1
15
100
500

Ablations on frequency of annotations

Number of labels

S
uc

ce
ss

 R
at

io

0 100k 200k 300k 400k 500k 600k
0

0.2

0.4

0.6

0.8

1

1
15
100
500

Ablations on frequency of annotations

Number of steps

S
uc

ce
ss

 R
at

io

Figure D.3: On the left/right we show the number of labels/timesteps needed to succeed when varying the query fre‐
quency. 1, 15, 100, and 500 are the number of episodes between each period of querying the human for annotations.

49

D.3 Effect of quality of the underlying reward function

In this section, we analyze the performance of our method in the Four Rooms environment when

dealing with a simplified version of feedback. In particular, we only return feedback if the given

queried states have a distance difference of at least d with respect to the goal. For context, in this

environment, 0.5 is approximately the distance between the center of two consecutive rooms, so

using d ≥ 0.5 is roughly similar to using the room number as a reward function. Therefore, in this

experiment, we can see that, even with very simple reward functions, we can still get some insight

on how to solve the task, though at the expense of clearly slower convergence. In particular, we can

see how coarser reward functions lead to worse performances. This also helps us understand what

happens in scenarios in which it is hard for humans to compare states that are similarly good for the

purpose of achieving the required goal.

Figure D.4: Effect of a simplified feedback given, where two states will only be labeled if their distance is greater than d,
otherwise the synthetic human will return a ”don’t know” as a label, which is ignored by our algorithm.

50

D.4 Analysis of the Goal Selector learning

Firstly we present a qualitative analysis, where we show visualizations of the learned goal selector

as different rooms are discovered during the learning process in the four-rooms domain in Fig D.5.

The goal selector model shows nontrivial extrapolation and can potentially provide guidance even

beyond the set of states it is trained on.

Figure D.5: The goal selector learns and converges to a result close to the oracle (rightmost) as epochs increase (left to
right). We observe how this goal selector gets updated iteratively as the frontier expands. Colder colors mean a lower
reward for that state, whereas warmer colors mean a higher reward for that state, in this case, this is equivalent to the
distance to the goal.

We perform a second quantitative analysis, presented in Figure D.6 where we explore how accu-

rate the goal selector is, depending on the number of queries it has been trained with. In particular,

we tested it in the Four Rooms environment by training the goal selector using pairs of states sam-

pled uniformly. During evaluation, given two states which are less than d units apart, we compute

the accuracy for which the model is able to pick the closest state to the goal. This allows us to see

that the model is able to, given two states, determine which one is the closest to the goal, even when

the given states are very close together and even when trained with just a handful of queries. For

context, bear in mind that the distance from the initial state to the goal is 1.6 units.

51

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

d < 2
d < 1
d < 0.5
d < 0.1
d < 0.05

Four Rooms

Number of queries

A
cc

ur
ac

y

Figure D.6: Analysis of the accuracy of the goal selector depending on the distance d between
the states given a certain number of queries sampled uniformly from the state space.

D.5 Effect of terminal exploration in frontier expansion

How important is terminal exploration to frontier expansion? To understand the

importance of random exploration after the breadcrumb goal is reached (as described in Section

Section 2.2.1), we evaluate the learning progress with and without this terminal exploration in Fig

D.7. We see that if no exploration is added our method fails, the reason being that new states are

only visited with the stochasticity of the policy which will decrease over time as it overfits and hence

the visitation of new states will also decrease. For this reason, without final random exploration, the

policy will get stuck without expanding its frontier anymore.

How important is taking out redundant steps? One of the tricks to make this method

work is to take out redundant steps. We define redundant steps as those that produce no change in

the observation space, one example would be advancing towards a wall when already in contact with

it.

In Figure D.8 we see the resulting performance with and without taking out redundant steps. In

52

0 50k 100k 150k 200k 250k 300k 350k 400k
0

0.2

0.4

0.6

0.8

1

Ours
Oracle
Ours (no exploration after the agent stops)
Oracle (no exploration after the agent stops)

Number of steps
S

uc
ce

ss
 R

at
io

Figure D.7: Effect of the use of exploration after reaching the commanded goal on the performance

particular, we can see that, even though our method can still reach the goal when having redundant

steps, it converges much slower than when we remove them, highlighting the importance of taking

them out.

50k 100k 150k 200k 250k 300k 350k 400k
0

0.2

0.4

0.6

0.8

1

Ours
Oracle
Ours w/o redundant steps
Oracle w/o redundant steps

Number of steps

S
uc

ce
ss

 R
at

io

Figure D.8: Effect of the use of exploration after reaching the commanded goal on the performance

53

.

54

E
Details on the Human Experiments

E.1 Human experiment on pusher and 2D navigation

In this section, we give more details on how we ran the human experiment on the pusher and 2D

navigation tasks. We designed a simplified interface shown in Figure E.1. We can see the two states

to be compared in blue and red and the goal we aim to achieve in green. Then the annotator has

to decide which one of the two states is closer to the given goal and provide feedback by clicking

55

either on the blue or red button. In the case in which the annotator is undecided, they can click on

the gray button that simply skips the current case. Finally, if the annotator does not provide any

feedback after 30 seconds of being presented with the scenario, we skip the current batch of labeling

and continue with training the policy. With this, we can take advantage of the properties of our

method and continue training the policy even when no labels are given.

Figure E.1: Interfaces for maze navigation (left) and pusher walls (right)

0 20k 40k 60k 80k 100k 120k
0

0.2

0.4

0.6

0.8

1
Human Experiment for 2D Navigation

Number of steps

S
uc

ce
ss

 R
at

io

0 0.5M 1M 1.5M 2M
0

0.2

0.4

0.6

0.8

1

Human
Oracle
Ours

Human Experiment for Pusher

Number of steps

S
uc

ce
ss

 R
at

io

Figure E.2: Learning Progress with Human‐in‐the‐Loop Feedback for maze navigation (left) and pusher walls (right)

In Figure E.2 we share again the results obtained with the human experiment on a larger scale.

We ran both experiments using the same frequency of labeling and number of labels per batch. In

particular, we labeled every 50 rollout trajectories and queried the annotators for 20 labels. These

parameters were identified through empirical experiments.

56

E.2 CrowdsourcedHuman Experiment on the Kitchen

In this section, we will go more into the details of the human experiments run on the kitchen bench-

mark. First, in this experiment, we were not able to provide a simplified representation of the state

space as we did for the pusher and 2D navigation tasks. Hence, we directly provided the state images

obtained during the rollouts of our policy in the environment, as seen in Figure E.3. The interface

remained very similar to the previous experiments, we continued having the left/right buttons for

selecting which state is preferred by the annotator and the ”don’t know” button in case they do not

see it clearly.

Figure E.3: Interface for the crowdsourcing experiment. We present two images to the user and ask for their feedback
on which one is closer to the target goal. The target goal is displayed when clicking on ”Show Task Description” together
with additional information about how to user the interface and was is expected from the user.

The system behind this interface is more complex since we needed to make it support concurrent

users from all over the world, labeling from their own places. Overall the structure of the system

consisted in a frontend website that was running on one of our servers built with NodeJS. The

57

interface was handling the responses from the user and sending them to the backend, as well as re-

questing the backend for additional states to compare. Then, we had the backend, also running on

our servers, and was built using FastAPI. The backend was in charge of running the algorithm in

parallel to accepting the answers coming from the interface through a public API, as well as sending

new pairs of images to label when requested.

58

Metric Percentage

Nationality
Spain 26.6% (29)
USA 20.2% (22)
India 9.2% (10)
Germany 8.3% (9)
China 7.3% (8)
France 4.6% (5)
Mexico 3.7% (4)
Colombia 2.8% (3)
Switzerland 1.8% (2)
Hong Kong 1.8% (2)
Canada 1.8% (2)
Uruguay 0.9% (1)
Singapore 0.9% (1)
Russia 0.9% (1)
Ireland 0.9% (1)
Lebanon 0.9% (1)
South Korea 0.9% (1)
Sweden 0.9% (1)
Andorra 0.9% (1)
Puerto rico 0.9% (1)
Israel 0.9% (1)
Prefer not to say 0.9% (1)

Ethnicity
Hispanic, Latino or Spanish 38.5% (42)
Asian 28.4% (31)
White or Caucasian 24.5% (27)
Middle Eastern or North

African
3.7% (4)

South-east Asian 2.8% (3)
Black or African American 0.9% (1)
Perfer not to say 0.9% (1)

Table E.1: Demographics on the participants of the crowdsourced data collection experiment

59

References

[1] Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B.,
Tobin, J., Abbeel, P., & Zaremba, W. (2017a). Hindsight experience replay. In I. Guyon,
U. von Luxburg, S. Bengio, H. M.Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett
(Eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA (pp. 5048–
5058).

[2] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B.,
Tobin, J., Abbeel, O. P., & Zaremba, W. (2017b). Hindsight experience replay. In Advances
in Neural Information Processing Systems (pp. 5048–5058).

[3] Azar, M. G., Osband, I., &Munos, R. (2017). Minimax regret bounds for reinforcement
learning. In D. Precup & Y.W. Teh (Eds.), Proceedings of the 34th International Conference
onMachine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70
of Proceedings ofMachine Learning Research (pp. 263–272).: PMLR.

[4] Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., &Munos, R. (2016).
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Informa-
tion Processing Systems (pp. 1471–1479).

[5] Biyik, E. (2022). Learning preferences for interactive autonomy. CoRR, abs/2210.10899.

[6] Biyik, E. & Sadigh, D. (2018). Batch active preference-based learning of reward functions. In
2nd Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October
2018, Proceedings, volume 87 of Proceedings ofMachine Learning Research (pp. 519–528).:
PMLR.

[7] Brafman, R. I. & Tennenholtz, M. (2002). R-MAX - A general polynomial time algorithm
for near-optimal reinforcement learning. J. Mach. Learn. Res., 3, 213–231.

[8] Burda, Y., Edwards, H., Storkey, A., & Klimov, O. (2018). Exploration by random network
distillation. arXiv preprint arXiv:1810.12894.

60

[9] Cabi, S., Colmenarejo, S. G., Novikov, A., Konyushkova, K., Reed, S. E., Jeong, R., Zolna,
K., Aytar, Y., Budden, D., Vecerík, M., Sushkov, O., Barker, D., Scholz, J., Denil, M., de Fre-
itas, N., &Wang, Z. (2020). Scaling data-driven robotics with reward sketching and batch
reinforcement learning. In M. Toussaint, A. Bicchi, & T. Hermans (Eds.),Robotics: Science
and Systems XVI, Virtual Event / Corvalis, Oregon, USA, July 12-16, 2020.

[10] Cederborg, T., Grover, I., Jr., C. L. I., & Thomaz, A. L. (2015). Policy shaping with human
teachers. In Q. Yang &M. J. Wooldridge (Eds.), Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015 (pp. 3366–3372).: AAAI Press.

[11] Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg, S., & Amodei, D. (2017a). Deep
reinforcement learning from human preferences.

[12] Christiano, P. F., Leike, J., Brown, T. B., Martic, M., Legg, S., & Amodei, D. (2017b). Deep
reinforcement learning from human preferences. In I. Guyon, U. von Luxburg, S. Bengio,
H. M.Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.),NeurIPS.

[13] Coumans, E. & Bai, Y. (2016). Pybullet, a python module for physics simulation for games,
robotics and machine learning. InGitHub Repository (pp. 5026–5033).

[14] Davchev, T., Sushkov, O. O., Regli, J., Schaal, S., Aytar, Y., Wulfmeier, M., & Scholz, J.
(2022). Wish you were here: Hindsight goal selection for long-horizon dexterous manip-
ulation. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022: OpenReview.net.

[15] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., & Clune, J. (2019). Go-explore: a new
approach for hard-exploration problems. CoRR, abs/1901.10995.

[16] Eysenbach, B., Salakhutdinov, R., & Levine, S. (2019). Search on the replay buffer: Bridging
planning and reinforcement learning. In H. M.Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada (pp. 15220–15231).

[17] Fujimoto, S., van Hoof, H., &Meger, D. (2018). Addressing function approximation error
in actor-critic methods. CoRR, abs/1802.09477.

[18] Ghosh, D., Gupta, A., Fu, J., Reddy, A., Devin, C., Eysenbach, B., & Levine, S. (2019).
Learning to reach goals without reinforcement learning. CoRR, abs/1912.06088.

[19] Gupta, A., Kumar, V., Lynch, C., Levine, S., & Hausman, K. (2019). Relay policy learning:
Solving long-horizon tasks via imitation and reinforcement learning. In L. P. Kaelbling, D.
Kragic, & K. Sugiura (Eds.), 3rd Annual Conference on Robot Learning, CoRL 2019, Osaka,

61

Japan, October 30 - November 1, 2019, Proceedings, volume 100 of Proceedings ofMachine
Learning Research (pp. 1025–1037).: PMLR.

[20] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290.

[21] Hartikainen, K., Geng, X., Haarnoja, T., & Levine, S. (2019). Dynamical distance learning
for unsupervised and semi-supervised skill discovery. CoRR, abs/1907.08225.

[Kaelbling] Kaelbling, L. P. : Citeseer.

[23] Knox, W. B. & Stone, P. (2008). TAMER: Training an Agent Manually via Evaluative Rein-
forcement. In IEEE 7th International Conference on Development and Learning.

[24] Lee, K., Smith, L. M., & Abbeel, P. (2021). PEBBLE: feedback-efficient interactive reinforce-
ment learning via relabeling experience and unsupervised pre-training. In M.Meila & T.
Zhang (Eds.), Proceedings of the 38th International Conference onMachine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings ofMachine Learning Re-
search (pp. 6152–6163).: PMLR.

[25] Levy, A., Konidaris, G. D., Jr., R. P., & Saenko, K. (2019). Learning multi-level hierarchies
with hindsight. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA,May 6-9, 2019: OpenReview.net.

[26] Liu, M., Zhu, M., & Zhang, W. (2022). Goal-conditioned reinforcement learning: Problems
and solutions. In L. D. Raedt (Ed.), Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022 (pp. 5502–
5511).: ijcai.org.

[27] Logan, G. D. (2002). An instance theory of attention and memory. In Psychological Review,
109(2), 376–400 (pp. 5026–5033).

[28] Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J., Levine, S., & Sermanet, P.
(2019). Learning latent plans from play. In L. P. Kaelbling, D. Kragic, & K. Sugiura (Eds.),
3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November
1, 2019, Proceedings, volume 100 of Proceedings ofMachine Learning Research (pp. 1113–
1132).: PMLR.

[29] Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., & Pathak, D. (2021). Discovering and
achieving goals via world models. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang,
& J. W. Vaughan (Eds.), Advances in Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual (pp. 24379–24391).

62

[30] Murali*, A., Chen*, T., Alwala*, K. V., Gandhi*, D., Pinto, L., Gupta, S., & Gupta, A.
(2019). PyRobot: An open-source robotics framework for research and benchmarking.
CoRR, abs/1906.08236.

[31] Nair, A., Chen, D., Agrawal, P., Isola, P., Abbeel, P., Malik, J., & Levine, S. (2017). Combin-
ing self-supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE
International Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore,
May 29 - June 3, 2017 (pp. 2146–2153).: IEEE.

[32] Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., & Levine, S. (2018). Visual reinforcement
learning with imagined goals. In S. Bengio, H. M.Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018,Montréal, Canada (pp. 9209–9220).

[33] Osband, I., Blundell, C., Pritzel, A., & Roy, B. V. (2016). Deep exploration via bootstrapped
DQN. In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, & R. Garnett (Eds.), Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain (pp. 4026–4034).

[34] Pong, V., Dalal, M., Lin, S., Nair, A., Bahl, S., & Levine, S. (2020). Skew-fit: State-covering
self-supervised reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
ofMachine Learning Research (pp. 7783–7792).: PMLR.

[35] Ross, S., Gordon, G., & Bagnell, D. (2011). A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international confer-
ence on artificial intelligence and statistics (pp. 627–635).: JMLRWorkshop and Conference
Proceedings.

[36] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

[37] Sharma, P., Sundaralingam, B., Blukis, V., Paxton, C., Hermans, T., Torralba, A., Andreas,
J., & Fox, D. (2022). Correcting robot plans with natural language feedback. CoRR,
abs/2204.05186.

[38] Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5026–
5033).

[39] Yang, G., Ajay, A., & Agrawal, P. (2022). Overcoming the spectral bias of neural value ap-
proximation. In International Conference on Learning Representations.

63

This thesis was typeset using LATEX,
originally developed by Leslie Lamport
and based on Donald Knuth’s TEX. The

body text is set in 11 point Egenolff-Berner
Garamond, a revival of Claude Garamont’s
humanist typeface. The above illustration, “Sci-
ence Experiment 02”, was created by Ben Schlit-
ter and released under cc by-nc-nd 3.0. A
template that can be used to format a PhD the-
sis with this look and feel has been released un-
der the permissive mit (x11) license, and can be
found online at github.com/suchow/Dissertate
or from its author, Jordan Suchow, at su-
chow@post.harvard.edu.

64

http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
mailto:suchow@post.harvard.edu

	Introduction
	Related Work
	Exploration in Reinforcement Learning
	Goal-Conditioned Reinforcement Learning
	Reinforcement Learning from Human Preferences (RLHF)

	Frontier Expansion with Human Guidance
	Problem Setup and Preliminaries
	Guiding Exploration in Goal-Conditioned RL with Human Feedback

	Results of the Frontier Expansion with Human Guidance Algorithm
	Evaluation Domains
	Baseline Comparisons and Evaluation Metrics
	Learning Goal-Conditioned Policies with Synthetic Human-in-the-Loop Feedback in Simulation
	Learning Goal Conditioned Policies with Real Human Annotators
	Learning Policies in the real world
	Ablation Analysis

	Conclusion
	Contribution
	Appendix Benchmarks
	Appendix Implementation Details
	Appendix Further analysis of the baselines
	Appendix Further Analysis and Ablations
	Compatibility with Learning from Demonstrations
	Effect of frequency and amount of querying on the training
	Effect of quality of the underlying reward function
	Analysis of the Goal Selector learning
	Effect of terminal exploration in frontier expansion

	Appendix Details on the Human Experiments
	Human experiment on pusher and 2D navigation
	Crowdsourced Human Experiment on the Kitchen

	References

