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Abstract 
Background 

Standard machine learning techniques need centralized training data to build models. However, in many 

settings, such as medical applications, it is not feasible to build centralized datasets due to privacy concerns. 

This restriction limits the opportunities for collaboration in building machine learning models. Moreover, it 

puts actors with limited access to data and computing resources at a disadvantage. Federated machine 

learning has been proposed as a solution to this problem. It enables actors to collaborate and build complex 

machine learning models without sharing their sensitive data. However, in federated machine learning, actors 

rely on a central coordinator to aggregate the individual models and distribute the aggregated model back to 

the participants. Decentralized machine learning goes a step further and enables fully decentralized training 

without the need for a central coordinator. However, to the best of our knowledge, there is no widely used 

open-source privacy-preserving mobile application for decentralized machine learning that uses the current 

state-of-the-art approaches in the field.  

Aim 

To fill this gap, we propose a mobile-browser application, “DeAI”, which allows users to collaboratively 

train models without sharing their data. 

Methods 

The platform was created using the Vue.js framework and incorporated a deep learning image classifier for 

the diagnosis of COVID-19 from Lung Ultrasound (LUS) images. To this end, the DeepChest model 

previously developed by our group was re-built using TensorFlow.js, simplified and tested on a simulated 

LUS dataset split across two and four users with various data distributions 

Results 

We present DeAI, a fully functional mobile-browser application with an intuitive user-friendly interface. Our 

simplified version of DeepChest achieved comparable results to the original model (AUROC 88.9% for the 

original vs AUROC 88.5% for the diagnosis of COVID on a given test set) ran in a browser. This 

performance was mostly maintained in a range of experimental non-independently with low bias on one of 

the labels and identically distributed data splits but performed poorly in heterogeneous settings where the 

bias for one label was of 90%. In this last case, our model overfits and always predicts the same label. 

Conclusion 

This work shows the potential of DeAI to act as a collaborative learning platform for robust medical image 

classification across distributed datasets without compromising user privacy. 
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Background 

The COVID-19 crisis has been further proof of the inequality among different countries around the world. 

This inequality also exists in the machine learning world. In low-resource settings, researchers do not have 

access to large datasets which are fundamental for developing complex models to solve major problems. 

The problem 

The problem that this work attempts to address is the fragmentation of datasets, whereby different entities 

might have different datasets for solving a common problem. However, they might not be able to share these 

datasets due to ethical restrictions and well-considered concerns about the intellectual property and privacy 

of data, especially in medical settings. Nevertheless, it would be beneficial for these different entities to 

combine their datasets to train more powerful models.  

Existing solution to this problem 

Nowadays, there exist several solutions for solving this problem. The first is to have a centralized setting, 

where each entity would share their data with a central server that will train a common model with all the 

data from the entities. The clear issue with this approach is that peers must trust a central node with their 

sensitive data. As mentioned before, in many cases such as in medical settings, this is not possible.  

In recent years, there has been a new branch of machine learning algorithms called distributed learning. The 

most frequent type of distributed learning is called federated learning. The different entities (called nodes or 

peers) will each conserve the data exclusively on their side, and a central server coordinates the learning 

between them. On each iteration of the learning process, each node will share with the server the new weights 

of their training model. Then, the server will aggregate the different weights from each node and will share 

them back with the rest of the nodes. Finally, the nodes will proceed with their training using the newly 

received weights and continue iterating with the server.                A                                          B 

As we can see, this is already a big improvement since 

now the central server will not have access to the 

private data of each node. However, we are still 

trusting a central node while training which is not 

desirable since it holds most of the power and will be 

the main beneficiary of this training process.  
Figure 1. Architectures of (A) Federated (FL) and (B) 
Decentralised (DeL) learning. Here, FL has a centralized server 
whereas DeL has no server. 
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Therefore, there is a need for a mobile application for privacy-preserving, distributed machine learning that 

easily adapts to different types of tasks. Thus, we built a mobile browser application, called DeAI, that 

implements a decentralized learning protocol. Contrasting with federated learning, decentralized learning 

lacks a central coordinator. The different nodes communicate directly in a peer-to-peer fashion, on an 

underlying communication network topology, while attempting to perform gradient-based learning1. As we 

can see this form of communication is convenient since we do not need to trust a central server. 

AIM and objectives 

We have three main objectives for this project.  

1. To build a mobile browser application to train deep learning models in a decentralized network.  

2. To create an intuitive user interface to ensure access to users without prior knowledge of 

decentralized learning.  

3. To apply this application to a real-world use case of a medical image classification task and test its 

performance in various conditions of data distribution.  

Objective 1: Decentralized Learning 

Build a modularizable code base on which decentralized learning can take place using an interchangeable 

permutation of newly integrated models, and modifiable communication patterns and aggregation methods.  

Objective 2: Intuitive user interface 

Firstly, the interface should be accessible in a browser from all devices, from laptops to mobile phones, it 

should be clean (i.e. minimal, so as to reduce perceived complexity), but at the same time provide sufficient 

information that engineers and researchers will need to train their models. In addition, it is necessary to 

provide constant visual feedback to our users so that they can be aware of the flow of the app. Finally, the 

interface should provide separate functions for image and tabular dataset tasks.  

Objective 3: Real world use case experimentation 

To demonstrate the utility of DeAI we will apply it to the real-world case of COVID-19 diagnosis from an 

image dataset of Lung Ultrasounds (LUS): the LUS-COVID dataset from iGH2 which comprises LUS images 

from 162 patients suspected of COVID-19. Each patient has a set of images from different parts of the lung 

and is labelled as COVID-19 positive or COVID-19 negative.   

 
1 Source: Martin Jaggi, 2020, Algorithms for Decentralized Artificial Intelligence 
2 Source : https://github.com/epfl-iglobalhealth/LUS-COVID-main/tree/master/dataset , iGH, EPFL. 
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Methods  

The app was developed, benchmarked, and tested using two well-known datasets: 1) the titanic dataset for 

tabular tasks and 2) the MNIST dataset for image classification tasks. Once the functionality was verified on 

these tasks, the LUS-COVID dataset was implemented. 

Application interface and backend 

Figure 2 shows the final mock-up of the app showcasing its main functionalities and screens. Previous 

versions of the mock-up were shared with prospective users to receive feedback and further improve the 

design. After several iterations we arrived at the before mentioned final version in Figure 2. 

The platform was built using Vue.js, a JavaScript framework for building dynamic single page applications 

on the browser. A single-page application means that there’s only a single HTML fetched by the browser, 

but at the same time allowing different screens. The advantage of building a single page app is that it will 

allow users to train different models or distribute different model weights concurrently, since threads are 

maintained when switching between screens which would be much harder in a multiple-page app. 

 
 

Figure 2. Final version of DeAI mock-up. From left to right we can see the task list, 
model information, data uploading, training results, peer information/model 
storage/testing  screens of DeAI. 
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Moreover, using Vue.js makes it easy to deploy the application using GitHub Pages, which makes it very 

convenient since we can use continuous integration and make the changes available to our users 

instantaneously. 

To create an intuitive interface, we used TailwindCSS, a framework for making visually appealing browser 

applications through CSS. Among other features, it allows the user to deploy dark mode and to personalize 

the interface. 

The main component of the app is a router (nomenclature in Vue.js for the component that organizes the 

links between screens in the app). This router will link the different components, of which we have four 

(ordered by the flow of the app): 

▪ Task list: where all the available tasks are fetched from a server and displayed. 

▪ Model Description: where some basic information about each model can be found. Here, the user is 

prompted to select the model they want to use. This last view will only be displayed if the user has a 

saved model. 

▪ Model training: here, the user can upload the data to train the model and choose whether they want to 

train the model locally or in a distributed manner. While the model is being trained, the user will be able 

to see how the training and validation accuracies evolve throughout training. Moreover, if training 

distributively, there will be additional information displayed like the number of peers that the user is 

helping, and how much time the user is waiting to receive the weights. After training the model, the user 

will be able to save it and/or go to the testing component if desired.  

▪ Model testing: here, the user will upload the testing dataset to test the newly trained model. If the user 

only uploads one data point, the results will be displayed on the screen. In the case where they upload 

more than one data point, a csv file containing the predictions will be downloaded. 

Each task has different models and different pre-processing pipelines. For modularisation, we decided to 

have the components explained above generalized and reused for all tasks. These will be using different task 

scripts depending on which task has been selected. A task script consists of the following functions: 

▪ create_model: creates a Tensorflow.js model to solve the task. 

▪ data_preprocessing: handles the pre-processing of the data points and will return the pre-processed 

training set and the labels one-hot-encoded.  

▪ predict: passes the data points to the model and return its predictions 

Moreover, the task script also contains two objects with information about the task: 

▪ display_information: which contains texts explaining the architecture and limitations of the model, 

an overview of the task, and a sample datapoint. 

▪ training_information: which contains necessary details for training the model, like batch size, 

learning rate, optimizer, number of epochs and some attributes related to decentralised training like 

the server’s port and the threshold of the number of peers to wait for.  

Finally, an important part of the work has been in refactoring the app and adding documentation to make an 

app that will be easy to further improve and extend in the future. 
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Decentralised learning 

There are three main components to the decentralised learning feature:  

1. The communication protocol 

2. The network topology 

3. The weights aggregation method 

The communication protocol uses PeerJS and a small extension library developed previously by the DeAI 

team3 to communicate the model weights between peers and communicate with the server. TensorFlow 

models are represented via two files, one containing the model’s weights and the other containing the model 

architecture. We use the team’s PeerJS extension library to serialize them, send them to other peers and 

convert them back into TensorFlow models once received.  

Regarding the network topology, at the end of a training epoch, each peer sends a weight request to the rest 

of the peers, sends his/her model to those who requested it and waits to receive as many weights as specified 

by the threshold parameter. If some weights do not arrive in ten seconds, the peer continues training without 

them.  

 

 

 

 

  

 
3 PeerJS DeAI - MLO: https://github.com/epfml/DeAI/tree/master/experiments/peerjs 

Figure 3. Communication algorithm. The communication algorithm consists in getting the list of connected peers for the desired 
task and start training the model collaboratively. When training, we are doing a simple average among the received weights at 
the end of each epoch. 
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For model aggregation, we compute an average between all the received weights and the current weight. 

This has proven to be an effective weight aggregation method4 and is simple to implement.  

The final algorithm for the communication between peers is shown on figure 3. There are some small 

adaptations due to this algorithm having to be run on a real-world case. For example, even if L peers have 

been connected to the server, there could be some problems on their side and the peer might not receive the 

weights for a long time. To solve this problem, we set a maximum waiting time of ten seconds, after which 

the peer does not wait for the weights anymore and continues to the next step. Moreover, we also set a 

threshold value so that if for example a peer only wants to train with two more peers, they can set the 

threshold to two and then as soon as it gets two weights the algorithm will proceed into the next step and 

hence it will not have to wait for the rest of the peers. 

LUS-COVID model 

We adapt an existing deep learning classifier (DeepChest) to detect patterns of COVID-19 in the LUS 

dataset. To create the model and do the pre-processing, we use TensorFlow.js, which is the well-known 

python library TensorFlow adapted to be run on the browser and coded in JavaScript. Running models on 

the browser is relatively new, which means that not many optimizations are in place at the moment and most 

of the time training complex python models that run on GPUs is not possible in a mobile phone’s browser. 

For this reason and due to time constraints, we implemented a simplified version of DeepChest. The original 

DeepChest uses a ResNet18 to perform feature extraction of the images, but this model is not available in 

Tensorflow.js due to its size. For this reason, we used Mobilenet to perform the feature extraction. This is an 

optimized architecture made of convolutional neural networks and pooling layers trained on ImageNet but 

much smaller and executable on a phone’s browser. Due to time limitations, we did not implement the 

positional embeddings in our model. Moreover, we only implemented one of the aggregation functions 

available in DeepChest (i.e. mean pooling ) 

The final DeAI’s DeepChest model architecture is presented in figure 4. It consists of using Mobilenet as a 

feature extractor for each image, followed by a mean pooling layer that will average all images from the 

given patient. Finally, we pass the resulting vector into a two-layer multi-layer perceptron (MLP) classifier.  

 
4 Nedić, A. et al. (2018) 
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Figure 4. Original (top) vs DeAI’s (bottom) DeepChest architectures. Adapted from iGH. 
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Results 

Application interface 

Task list screen 

Figure 5 shows DeAI’s main screen. All 

tasks that are currently available for 

training are displayed here. The user can 

click on the desired task to proceed to 

the overview screen. 

Overview screen 

Figure 6 shows the overview screen for 

a specific task. It gives some useful 

information about the task and the 

model designed for this task. 

Training images screen 

In Figure 7 we see the training screen,  

where the users can upload their dataset 

to train the model. In the case of an 

image dataset, the users will upload the 

images in the appropriate input box 

according to the label for each image 

(one input box per label). In the case 

where the task is a tabular dataset task, 

there will be just one input box to 

upload the csv file 

 (Note: there are some extra features in the 

tabular dataset tasks such as changing the 

name of the columns to match the expected 

ones by the task’s script).  

Once the data is uploaded, the user will 

be able to select either the “Train 

Figure 5. Task list screen 

Figure 6. Overview screen 

Figure 7. Training screen 
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Locally” button to train the model 

individually or the “Train Distributed” 

button to proceed with distributed 

learning. When finished training, the users 

can proceed to test their model by clicking 

on the “Test my Model” button at the 

bottom of the screen (Figure 8). 

Testing images screen 

In this screen (Figure 9), the user will be 

able to upload his/her testing set to test 

the newly trained model. Once the 

testing set is uploaded into the upload 

box, the user can click on the “Test” 

button and receive the predictions. In the 

case where more than one data point is 

provided, the predictions will be 

downloaded in a predictions.csv file. 

Otherwise, the prediction will be 

displayed below this button. 

Model storage 

As mentioned earlier we provide the capability of storing models. At this 

point, the model storage system is simple, there are at most 2 models per task 

at any given point in time: the working model and the saved model. The 

working model is the newly created or newly trained model and the saved 

model is a model that the user stored in some previous session. The users can 

see and remove the models they saved, by clicking on the folder item in the 

left bar (Figure 10) and the user can save the model after training (Figure 

11). Moreover, users have the possibility to choose which of the two models 

they want to use in the task overview screen (Figure 12). 

 

 

 

Figure 9.                                        Source; Torné V., M., 2021. 
 

Figure 8. Test my model button 

Figure 10. Model storage sidebar screen 

Figure 9. Testing screen 
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Feedback to the user 

One of the main goals of this project is to 

have an application that is understandable 

to users with various levels of expertise 

(being both simple to understand and 

providing enough information for more 

experienced users so that they may 

comprehend their training process and 

improve quality of their dataset, if 

necessary, e.g. by pre-processing the 

images before training). To satisfy this 

goal, provide as much feedback as 

possible. We do so in two different ways, 

the first is by displaying small messages 

at the bottom right of the screen 

informing the user about the state of the 

application (Figure 13). The second is by 

updating dynamically the UI with new 

information. We mainly do this in the 

training screen. As shown in Figure 14, 

we provide information about the training 

and validation accuracy of the model at 

each epoch for both locally and distributed 

learning.  

Furthermore, when training distributively we provide information such as the number of peers helped, 

waiting time as well as a training console where information about the weights shared and received is 

displayed. 

Figure 11. Save model button. Button located at 
the bottom of the training screen 

Figure 12. Select previous model button. Button 
located at the bottom of the task overview screen 

Figure 13. Feedback state messages to the user 

Figure 14. App training screen 



DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification 

Bachelor Project Report – June 2021                               Marcel Torné Villasevil      14 
 

Customization 

To make the interface as appealing as possible to all 

users, we provide the possibility to customize it. 

There are two levels of customization. First, the user 

can choose to have the background colour in either 

dark or white mode. In addition, the user can also set 

the theme colour to one of those shown in Figure 15. 

All this is available by clicking on the settings button. 

You can click into the link below to play with the live 

version of the DeAI.5 

LUS-model  

Aiming to verify the accuracy of 

DeAI’s DeepChest model we split the 

dataset in 5 folds. Then we iterate in a 

round robin fashion to select one split 

as the testing set and the remaining 

splits are used as training sets. We 

obtained the five ROC curves in Figure 

16 and averaged their areas to get the 

final accuracy. The presented results 

are achieved by a Python 

implementation of our simplified 

DeepChest model. The original 

DeepChest model using a transformer 

achieves an area under the ROC curve 

of 88.9%6 while our model achieves 

the accuracy of 88.5%.  

These are surprisingly good results since our model is greatly simplified compared to the more complex 

DeepChest with transformer architecture, which is run with more resources, python’s TensorFlow, and a 

ResNet18 and the results are almost the same. 

 
5 Link to DeAI’s live application: https://epfml.github.io/DeAI/ 
6https://github.com/epfl-iglobalhealth/LUS-COVID-main/blob/master/notebooks/validation_noValidation_evaluation.ipynb 

Figure 17.                                                Source; Torné V., M., 2021 

Figure 11. Screen personalization examples. Same screen on 
dark and light mode. 

Figure 12. DeAI’s DeepChest ROC curve. Here, we see the five ROC curves for the 
DeAI’s DeepChest version. These were obtained by splitting the dataset in five splits, 
using four splits for training, one for testing and swapping the training and testing 
splits in a round-robin fashion per each iteration 
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Decentralised learning 

To demonstrate that DeAI is working as anticipated, and that peers can benefit from using decentralised 

learning by building better models collaboratively, we ran some benchmarks on the app using the LUS-

COVID dataset, and DeAI‘s DeepChest model. The first step was to extract 10% of the dataset into a training 

to be used as a testing set. The second step was to split the remaining of the dataset set among the different 

peers. We split the data in different manners, homogeneously and heterogeneously, to see how decentralized 

learning would perform in each situation. For each peer, the received dataset is split into training and 

validation set. Then, we proceeded by running each training set for each peer locally and verify its 

performance on the testing set. Afterwards, we train a new model collaboratively and again verify its 

performance on the testing set. Next, we will present the results for the four experiments, splitting the dataset 

uniformly distributed, quantity biased, fever biased and covid biased: 

Uniformly distributed experiment 

 

 

In this experiment, we split the dataset such that each peer has the same number of data points with a uniform 

distribution in the labels. When two peers are training, we see a slight decrease (6%) in performance for one 

of the peers, and similarly for when four peers are training. However, there is an interesting observation 

which is that when training four peers, we see that the model for each peer has the same performance, which 

is an indication that the model converged. Indeed, this is a good example of how fragmented datasets trained 

locally can have non-representative and spurious performances due to low sample numbers. Statistically, we 

expect each model trained locally on random splits to be equivalent. Distributed training achieves this 

outcome. 
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Quantity biased experiment 

When the dataset is split unevenly in terms of sample number, the performance of the distributed option 

shows potential improvement compared to the local training. We observe the anticipated result that for two 

peers, the performance for the one with more data (80%) is better than the one with less data (20%). In the 

case of four peers the performance of all peers in a distributed setting is preferable to local training. Finally, 

we observe again the same accuracy in the final model for each peer which is an indicator of the convergence. 

Fever-biased experiment 

In this experiment we mimic a label skew by 

biasing the dataset according to whether the 

patients had fever or not (implying a slight bias in 

COVID +/- patients). Thus, peer 0 (with no fever) 

has more patients who were covid negative. Here, 

training distributively has a performance superior 

to local training and even improves in comparison 

to centralised training (93.3% accuracy vs 88.5% 

found for the ROCAUC area previously). We can 

deduce that they combine their knowledge and achieve a final model that is much better than the individual 

ones.  

COVID-biased experiment 

In this last experiment we perform a more direct label 

skew where peer 0 has 90% COVID+ and peer 1 

10%. In Figures 21-22, we can see that while they 

are training, the second peers completely bias the 

first peer. And the first peer will perform badly, even 

in his/her own training and validation sets. 

Moreover, when we investigate the predictions, 
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both peers predict the same label, covid negative, for all the testing patients, which reinforces the point made 

before.  

Compute efficiency 

Finally, we wanted to conclude with some numbers on the time overhead that comes from using decentralized 

learning. From the experiments we ran, we can say that usually the time overhead for waiting to receive 

weights and update them is around 5 seconds per epoch. However, if the weights lower limit threshold (which 

is how many weights you want to receive before the averaging) is too high then this overhead can reach the 

upper limit of ten seconds per epoch. However, we have observed that when training distributively the model 

seems to converge in less iterations than when training locally. 

Discussion 

Limitations  

As has been mentioned before, the app has some limitations with respect to the sizes of the models being 

trained and the resources available since the models are trained on browsers and mobile phones. However, 

we have not reached the limit yet. We have observed that if we are careful with memory management, we 

can in fact train larger models on larger datasets. For example, during the data pre-processing pipeline, we 

must be extra careful compared to when we train models in python, by properly deleting tensors when not 

used anymore. Moreover, we believe that loading training data in batches will also provide great performance 

benefits. 

In the decentralised learning part, we also found several limitations. The first is that for the moment there is 

no control on which state of the training a peer is currently in, for example, a peer might just be finishing the 

training which means that his/her model is already providing good performance, but it might start getting 

weights from a peer that just started training and for which the weights are almost random. This will decrease 

the performance of the first peer’s model. The second limitation is that for the moment the weight exchange 

Figure 21. Peer 0 training curve for the COVID-biased 
experiment.  

Figure 22. Peer 1 training curve for the COVID-biased 
experiment.  
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is solely done at the end of each epoch, however, for some cases it would be beneficial to exchange weights 

in the middle of the epochs, as for the covid-bias experiment. 

In addition, during this project, we started the app from scratch, as explained before we even made the mock-

ups, and the time we had was limited so there are plenty of new features that could bring even more value to 

the app that we were not able to implement.  

Future work  

We are excited and optimistic about DeAI since it is setting the foundations to having a great mobile 

application for privacy preserving decentralised machine learning for any kind of task. Just to give an 

overview at what will come next: 

▪ Personalized decentralised learning: we will be able to implement Frédéric Berdoz’s algorithm 

on the application and this will bring many new capabilities. It will improve incentivisation and 

will allow us to provide feedback to the peers about the quality of the data they are providing. 

We plan to display this information in the form of a peers ranking. Moreover, it will also allow 

the possibility of doing weighted averaging so that peers’ models that improve your model in 

your validation set will have higher weights than the ones which perform poorly. 

▪ Enhance privacy: one of the core goals of this app and of using decentralised learning is the 

privacy of the data. At MLO, Milos Vujasinovic is working on building an algorithm that will 

enhance the privacy of the data so that no information about each peer’s dataset can be deduced 

from the model weights. 

▪ Tasks with bigger and more complex models: Martin Milenkoski is already working on 

implementing Relay SGD in the app to be able to train bigger and more complex models for 

more complicated tasks as CIFAR10. 

These are just three next steps that will be pursued in the near future, and which really excite us, but this is 

just the beginning of DeAI and there is much room for continuing to improve and extend it further. 
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Data source repository: 

● Deepchest repo: https://github.com/epfl-iglobalhealth/LUS-COVID-main/tree/master/deepchest 

● DeAI repo: https://github.com/epfml/DeAI 

● LUS-Covid dataset https://github.com/epfl-iglobalhealth/LUS-COVID-main/tree/master/dataset 

● LUS-DeAI benchmarking & DeAI’s Deepchest model repo: https://github.com/epfl-

iglobalhealth/LUS-DeAI  

● PeerJS DeAI - MLO: https://github.com/epfml/DeAI/tree/master/experiments/peerjs 

 

Marcel Torné Villasevil and Paul Mansat (2021) DeAI live version: https://epfml.github.io/DeAI/ 


