

DeAI: A mobile application for privacy
preserving decentralised machine learning
in medical image classification.

Bachelor Project Report Student: Marcel Torné Villasevil

Supervisors:

Professor Martin Jaggi

Dr. Mary-Anne Hartley

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 2

Abstract
Background

Standard machine learning techniques need centralized training data to build models. However, in many

settings, such as medical applications, it is not feasible to build centralized datasets due to privacy concerns.

This restriction limits the opportunities for collaboration in building machine learning models. Moreover, it

puts actors with limited access to data and computing resources at a disadvantage. Federated machine

learning has been proposed as a solution to this problem. It enables actors to collaborate and build complex

machine learning models without sharing their sensitive data. However, in federated machine learning, actors

rely on a central coordinator to aggregate the individual models and distribute the aggregated model back to

the participants. Decentralized machine learning goes a step further and enables fully decentralized training

without the need for a central coordinator. However, to the best of our knowledge, there is no widely used

open-source privacy-preserving mobile application for decentralized machine learning that uses the current

state-of-the-art approaches in the field.

Aim

To fill this gap, we propose a mobile-browser application, “DeAI”, which allows users to collaboratively

train models without sharing their data.

Methods

The platform was created using the Vue.js framework and incorporated a deep learning image classifier for

the diagnosis of COVID-19 from Lung Ultrasound (LUS) images. To this end, the DeepChest model

previously developed by our group was re-built using TensorFlow.js, simplified and tested on a simulated

LUS dataset split across two and four users with various data distributions

Results

We present DeAI, a fully functional mobile-browser application with an intuitive user-friendly interface. Our

simplified version of DeepChest achieved comparable results to the original model (AUROC 88.9% for the

original vs AUROC 88.5% for the diagnosis of COVID on a given test set) ran in a browser. This

performance was mostly maintained in a range of experimental non-independently with low bias on one of

the labels and identically distributed data splits but performed poorly in heterogeneous settings where the

bias for one label was of 90%. In this last case, our model overfits and always predicts the same label.

Conclusion

This work shows the potential of DeAI to act as a collaborative learning platform for robust medical image

classification across distributed datasets without compromising user privacy.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 3

INDEX

ABSTRACT	 2	

INDEX	 3	

BACKGROUND	 4	

AIM	AND	OBJECTIVES	 5	

METHODS	 6	

APPLICATION	INTERFACE	AND	BACKEND	 6	
DECENTRALISED	LEARNING	 8	
LUS-COVID	MODEL	 9	

RESULTS	 11	

APPLICATION	INTERFACE	 11	
LUS-MODEL	 14	
DECENTRALISED	LEARNING	 15	

DISCUSSION	 17	

LIMITATIONS	 17	
FUTURE	WORK	 18	

ACKNOWLEDGMENTS	 19	

REFERENCES	 20	

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 4

Background

The COVID-19 crisis has been further proof of the inequality among different countries around the world.

This inequality also exists in the machine learning world. In low-resource settings, researchers do not have

access to large datasets which are fundamental for developing complex models to solve major problems.

The problem

The problem that this work attempts to address is the fragmentation of datasets, whereby different entities

might have different datasets for solving a common problem. However, they might not be able to share these

datasets due to ethical restrictions and well-considered concerns about the intellectual property and privacy

of data, especially in medical settings. Nevertheless, it would be beneficial for these different entities to

combine their datasets to train more powerful models.

Existing solution to this problem

Nowadays, there exist several solutions for solving this problem. The first is to have a centralized setting,

where each entity would share their data with a central server that will train a common model with all the

data from the entities. The clear issue with this approach is that peers must trust a central node with their

sensitive data. As mentioned before, in many cases such as in medical settings, this is not possible.

In recent years, there has been a new branch of machine learning algorithms called distributed learning. The

most frequent type of distributed learning is called federated learning. The different entities (called nodes or

peers) will each conserve the data exclusively on their side, and a central server coordinates the learning

between them. On each iteration of the learning process, each node will share with the server the new weights

of their training model. Then, the server will aggregate the different weights from each node and will share

them back with the rest of the nodes. Finally, the nodes will proceed with their training using the newly

received weights and continue iterating with the server. A B

As we can see, this is already a big improvement since

now the central server will not have access to the

private data of each node. However, we are still

trusting a central node while training which is not

desirable since it holds most of the power and will be

the main beneficiary of this training process.
Figure 1. Architectures of (A) Federated (FL) and (B)
Decentralised (DeL) learning. Here, FL has a centralized server
whereas DeL has no server.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 5

Therefore, there is a need for a mobile application for privacy-preserving, distributed machine learning that

easily adapts to different types of tasks. Thus, we built a mobile browser application, called DeAI, that

implements a decentralized learning protocol. Contrasting with federated learning, decentralized learning

lacks a central coordinator. The different nodes communicate directly in a peer-to-peer fashion, on an

underlying communication network topology, while attempting to perform gradient-based learning1. As we

can see this form of communication is convenient since we do not need to trust a central server.

AIM and objectives

We have three main objectives for this project.

1. To build a mobile browser application to train deep learning models in a decentralized network.

2. To create an intuitive user interface to ensure access to users without prior knowledge of

decentralized learning.

3. To apply this application to a real-world use case of a medical image classification task and test its

performance in various conditions of data distribution.

Objective 1: Decentralized Learning

Build a modularizable code base on which decentralized learning can take place using an interchangeable

permutation of newly integrated models, and modifiable communication patterns and aggregation methods.

Objective 2: Intuitive user interface

Firstly, the interface should be accessible in a browser from all devices, from laptops to mobile phones, it

should be clean (i.e. minimal, so as to reduce perceived complexity), but at the same time provide sufficient

information that engineers and researchers will need to train their models. In addition, it is necessary to

provide constant visual feedback to our users so that they can be aware of the flow of the app. Finally, the

interface should provide separate functions for image and tabular dataset tasks.

Objective 3: Real world use case experimentation

To demonstrate the utility of DeAI we will apply it to the real-world case of COVID-19 diagnosis from an

image dataset of Lung Ultrasounds (LUS): the LUS-COVID dataset from iGH2 which comprises LUS images

from 162 patients suspected of COVID-19. Each patient has a set of images from different parts of the lung

and is labelled as COVID-19 positive or COVID-19 negative.

1 Source: Martin Jaggi, 2020, Algorithms for Decentralized Artificial Intelligence
2 Source : https://github.com/epfl-iglobalhealth/LUS-COVID-main/tree/master/dataset , iGH, EPFL.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 6

Methods

The app was developed, benchmarked, and tested using two well-known datasets: 1) the titanic dataset for

tabular tasks and 2) the MNIST dataset for image classification tasks. Once the functionality was verified on

these tasks, the LUS-COVID dataset was implemented.

Application interface and backend

Figure 2 shows the final mock-up of the app showcasing its main functionalities and screens. Previous

versions of the mock-up were shared with prospective users to receive feedback and further improve the

design. After several iterations we arrived at the before mentioned final version in Figure 2.

The platform was built using Vue.js, a JavaScript framework for building dynamic single page applications

on the browser. A single-page application means that there’s only a single HTML fetched by the browser,

but at the same time allowing different screens. The advantage of building a single page app is that it will

allow users to train different models or distribute different model weights concurrently, since threads are

maintained when switching between screens which would be much harder in a multiple-page app.

Figure 2. Final version of DeAI mock-up. From left to right we can see the task list,
model information, data uploading, training results, peer information/model
storage/testing screens of DeAI.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 7

Moreover, using Vue.js makes it easy to deploy the application using GitHub Pages, which makes it very

convenient since we can use continuous integration and make the changes available to our users

instantaneously.

To create an intuitive interface, we used TailwindCSS, a framework for making visually appealing browser

applications through CSS. Among other features, it allows the user to deploy dark mode and to personalize

the interface.

The main component of the app is a router (nomenclature in Vue.js for the component that organizes the

links between screens in the app). This router will link the different components, of which we have four

(ordered by the flow of the app):

▪ Task list: where all the available tasks are fetched from a server and displayed.

▪ Model Description: where some basic information about each model can be found. Here, the user is

prompted to select the model they want to use. This last view will only be displayed if the user has a

saved model.

▪ Model training: here, the user can upload the data to train the model and choose whether they want to

train the model locally or in a distributed manner. While the model is being trained, the user will be able

to see how the training and validation accuracies evolve throughout training. Moreover, if training

distributively, there will be additional information displayed like the number of peers that the user is

helping, and how much time the user is waiting to receive the weights. After training the model, the user

will be able to save it and/or go to the testing component if desired.

▪ Model testing: here, the user will upload the testing dataset to test the newly trained model. If the user

only uploads one data point, the results will be displayed on the screen. In the case where they upload

more than one data point, a csv file containing the predictions will be downloaded.

Each task has different models and different pre-processing pipelines. For modularisation, we decided to

have the components explained above generalized and reused for all tasks. These will be using different task

scripts depending on which task has been selected. A task script consists of the following functions:

▪ create_model: creates a Tensorflow.js model to solve the task.

▪ data_preprocessing: handles the pre-processing of the data points and will return the pre-processed

training set and the labels one-hot-encoded.

▪ predict: passes the data points to the model and return its predictions

Moreover, the task script also contains two objects with information about the task:

▪ display_information: which contains texts explaining the architecture and limitations of the model,

an overview of the task, and a sample datapoint.

▪ training_information: which contains necessary details for training the model, like batch size,

learning rate, optimizer, number of epochs and some attributes related to decentralised training like

the server’s port and the threshold of the number of peers to wait for.

Finally, an important part of the work has been in refactoring the app and adding documentation to make an

app that will be easy to further improve and extend in the future.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 8

Decentralised learning

There are three main components to the decentralised learning feature:

1. The communication protocol

2. The network topology

3. The weights aggregation method

The communication protocol uses PeerJS and a small extension library developed previously by the DeAI

team3 to communicate the model weights between peers and communicate with the server. TensorFlow

models are represented via two files, one containing the model’s weights and the other containing the model

architecture. We use the team’s PeerJS extension library to serialize them, send them to other peers and

convert them back into TensorFlow models once received.

Regarding the network topology, at the end of a training epoch, each peer sends a weight request to the rest

of the peers, sends his/her model to those who requested it and waits to receive as many weights as specified

by the threshold parameter. If some weights do not arrive in ten seconds, the peer continues training without

them.

3 PeerJS DeAI - MLO: https://github.com/epfml/DeAI/tree/master/experiments/peerjs

Figure 3. Communication algorithm. The communication algorithm consists in getting the list of connected peers for the desired
task and start training the model collaboratively. When training, we are doing a simple average among the received weights at
the end of each epoch.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 9

For model aggregation, we compute an average between all the received weights and the current weight.

This has proven to be an effective weight aggregation method4 and is simple to implement.

The final algorithm for the communication between peers is shown on figure 3. There are some small

adaptations due to this algorithm having to be run on a real-world case. For example, even if L peers have

been connected to the server, there could be some problems on their side and the peer might not receive the

weights for a long time. To solve this problem, we set a maximum waiting time of ten seconds, after which

the peer does not wait for the weights anymore and continues to the next step. Moreover, we also set a

threshold value so that if for example a peer only wants to train with two more peers, they can set the

threshold to two and then as soon as it gets two weights the algorithm will proceed into the next step and

hence it will not have to wait for the rest of the peers.

LUS-COVID model

We adapt an existing deep learning classifier (DeepChest) to detect patterns of COVID-19 in the LUS

dataset. To create the model and do the pre-processing, we use TensorFlow.js, which is the well-known

python library TensorFlow adapted to be run on the browser and coded in JavaScript. Running models on

the browser is relatively new, which means that not many optimizations are in place at the moment and most

of the time training complex python models that run on GPUs is not possible in a mobile phone’s browser.

For this reason and due to time constraints, we implemented a simplified version of DeepChest. The original

DeepChest uses a ResNet18 to perform feature extraction of the images, but this model is not available in

Tensorflow.js due to its size. For this reason, we used Mobilenet to perform the feature extraction. This is an

optimized architecture made of convolutional neural networks and pooling layers trained on ImageNet but

much smaller and executable on a phone’s browser. Due to time limitations, we did not implement the

positional embeddings in our model. Moreover, we only implemented one of the aggregation functions

available in DeepChest (i.e. mean pooling)

The final DeAI’s DeepChest model architecture is presented in figure 4. It consists of using Mobilenet as a

feature extractor for each image, followed by a mean pooling layer that will average all images from the

given patient. Finally, we pass the resulting vector into a two-layer multi-layer perceptron (MLP) classifier.

4 Nedić, A. et al. (2018)

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 10

Figure 4. Original (top) vs DeAI’s (bottom) DeepChest architectures. Adapted from iGH.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 11

Results

Application interface

Task list screen

Figure 5 shows DeAI’s main screen. All

tasks that are currently available for

training are displayed here. The user can

click on the desired task to proceed to

the overview screen.

Overview screen

Figure 6 shows the overview screen for

a specific task. It gives some useful

information about the task and the

model designed for this task.

Training images screen

In Figure 7 we see the training screen,

where the users can upload their dataset

to train the model. In the case of an

image dataset, the users will upload the

images in the appropriate input box

according to the label for each image

(one input box per label). In the case

where the task is a tabular dataset task,

there will be just one input box to

upload the csv file

 (Note: there are some extra features in the

tabular dataset tasks such as changing the

name of the columns to match the expected

ones by the task’s script).

Once the data is uploaded, the user will

be able to select either the “Train

Figure 5. Task list screen

Figure 6. Overview screen

Figure 7. Training screen

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 12

Locally” button to train the model

individually or the “Train Distributed”

button to proceed with distributed

learning. When finished training, the users

can proceed to test their model by clicking

on the “Test my Model” button at the

bottom of the screen (Figure 8).

Testing images screen

In this screen (Figure 9), the user will be

able to upload his/her testing set to test

the newly trained model. Once the

testing set is uploaded into the upload

box, the user can click on the “Test”

button and receive the predictions. In the

case where more than one data point is

provided, the predictions will be

downloaded in a predictions.csv file.

Otherwise, the prediction will be

displayed below this button.

Model storage

As mentioned earlier we provide the capability of storing models. At this

point, the model storage system is simple, there are at most 2 models per task

at any given point in time: the working model and the saved model. The

working model is the newly created or newly trained model and the saved

model is a model that the user stored in some previous session. The users can

see and remove the models they saved, by clicking on the folder item in the

left bar (Figure 10) and the user can save the model after training (Figure

11). Moreover, users have the possibility to choose which of the two models

they want to use in the task overview screen (Figure 12).

Figure 9. Source; Torné V., M., 2021.

Figure 8. Test my model button

Figure 10. Model storage sidebar screen

Figure 9. Testing screen

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 13

Feedback to the user

One of the main goals of this project is to

have an application that is understandable

to users with various levels of expertise

(being both simple to understand and

providing enough information for more

experienced users so that they may

comprehend their training process and

improve quality of their dataset, if

necessary, e.g. by pre-processing the

images before training). To satisfy this

goal, provide as much feedback as

possible. We do so in two different ways,

the first is by displaying small messages

at the bottom right of the screen

informing the user about the state of the

application (Figure 13). The second is by

updating dynamically the UI with new

information. We mainly do this in the

training screen. As shown in Figure 14,

we provide information about the training

and validation accuracy of the model at

each epoch for both locally and distributed

learning.

Furthermore, when training distributively we provide information such as the number of peers helped,

waiting time as well as a training console where information about the weights shared and received is

displayed.

Figure 11. Save model button. Button located at
the bottom of the training screen

Figure 12. Select previous model button. Button
located at the bottom of the task overview screen

Figure 13. Feedback state messages to the user

Figure 14. App training screen

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 14

Customization

To make the interface as appealing as possible to all

users, we provide the possibility to customize it.

There are two levels of customization. First, the user

can choose to have the background colour in either

dark or white mode. In addition, the user can also set

the theme colour to one of those shown in Figure 15.

All this is available by clicking on the settings button.

You can click into the link below to play with the live

version of the DeAI.5

LUS-model

Aiming to verify the accuracy of

DeAI’s DeepChest model we split the

dataset in 5 folds. Then we iterate in a

round robin fashion to select one split

as the testing set and the remaining

splits are used as training sets. We

obtained the five ROC curves in Figure

16 and averaged their areas to get the

final accuracy. The presented results

are achieved by a Python

implementation of our simplified

DeepChest model. The original

DeepChest model using a transformer

achieves an area under the ROC curve

of 88.9%6 while our model achieves

the accuracy of 88.5%.

These are surprisingly good results since our model is greatly simplified compared to the more complex

DeepChest with transformer architecture, which is run with more resources, python’s TensorFlow, and a

ResNet18 and the results are almost the same.

5 Link to DeAI’s live application: https://epfml.github.io/DeAI/
6https://github.com/epfl-iglobalhealth/LUS-COVID-main/blob/master/notebooks/validation_noValidation_evaluation.ipynb

Figure 17. Source; Torné V., M., 2021

Figure 11. Screen personalization examples. Same screen on
dark and light mode.

Figure 12. DeAI’s DeepChest ROC curve. Here, we see the five ROC curves for the
DeAI’s DeepChest version. These were obtained by splitting the dataset in five splits,
using four splits for training, one for testing and swapping the training and testing
splits in a round-robin fashion per each iteration

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 15

Decentralised learning

To demonstrate that DeAI is working as anticipated, and that peers can benefit from using decentralised

learning by building better models collaboratively, we ran some benchmarks on the app using the LUS-

COVID dataset, and DeAI‘s DeepChest model. The first step was to extract 10% of the dataset into a training

to be used as a testing set. The second step was to split the remaining of the dataset set among the different

peers. We split the data in different manners, homogeneously and heterogeneously, to see how decentralized

learning would perform in each situation. For each peer, the received dataset is split into training and

validation set. Then, we proceeded by running each training set for each peer locally and verify its

performance on the testing set. Afterwards, we train a new model collaboratively and again verify its

performance on the testing set. Next, we will present the results for the four experiments, splitting the dataset

uniformly distributed, quantity biased, fever biased and covid biased:

Uniformly distributed experiment

In this experiment, we split the dataset such that each peer has the same number of data points with a uniform

distribution in the labels. When two peers are training, we see a slight decrease (6%) in performance for one

of the peers, and similarly for when four peers are training. However, there is an interesting observation

which is that when training four peers, we see that the model for each peer has the same performance, which

is an indication that the model converged. Indeed, this is a good example of how fragmented datasets trained

locally can have non-representative and spurious performances due to low sample numbers. Statistically, we

expect each model trained locally on random splits to be equivalent. Distributed training achieves this

outcome.

0.84
0.86
0.88
0.9
0.92
0.94
0.96

Local Distributed

Te
st

in
g

ac
cu

ra
cy

Uniformly distributed experiment with 2 peers

peer0

peer1

0.7

0.75

0.8

0.85

0.9

0.95

Local Distributed

Te
st

in
g

ac
cu

ra
cy

Uniformly distributed experiment with 4 peers

peer	0

peer1

peer	2

peer	3

Figure 13. Bar plot of uniformly distributed experiment with 2 and 4 peers

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 16

Quantity biased experiment

When the dataset is split unevenly in terms of sample number, the performance of the distributed option

shows potential improvement compared to the local training. We observe the anticipated result that for two

peers, the performance for the one with more data (80%) is better than the one with less data (20%). In the

case of four peers the performance of all peers in a distributed setting is preferable to local training. Finally,

we observe again the same accuracy in the final model for each peer which is an indicator of the convergence.

Fever-biased experiment

In this experiment we mimic a label skew by

biasing the dataset according to whether the

patients had fever or not (implying a slight bias in

COVID +/- patients). Thus, peer 0 (with no fever)

has more patients who were covid negative. Here,

training distributively has a performance superior

to local training and even improves in comparison

to centralised training (93.3% accuracy vs 88.5%

found for the ROCAUC area previously). We can

deduce that they combine their knowledge and achieve a final model that is much better than the individual

ones.

COVID-biased experiment

In this last experiment we perform a more direct label

skew where peer 0 has 90% COVID+ and peer 1

10%. In Figures 21-22, we can see that while they

are training, the second peers completely bias the

first peer. And the first peer will perform badly, even

in his/her own training and validation sets.

Moreover, when we investigate the predictions,

0

0.2

0.4

0.6

0.8

1

Local Distributed

Te
st

in
g

ac
cu

ra
cy

Quantity bias experiment with 2 peers

peer0	80%
peer1	20%

0

0.2

0.4

0.6

0.8

1

Local Distributed

Te
st

in
g

ac
cu

ra
cy

Quantity bias experiment with 4 peers

peer	0	10%

peer1	20%

peer	2	30%

peer	3	40%

Figure 14. Bar plot of quantity biased experiment with 2 and 4 peers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Local Distributed

Te
st

in
g

ac
cu

ra
cy

Fever-bias experiment with 2 peers

peer0	no	fever

peer1	with	fever

Figure 19. Bar plot of fever-biased experiment with 2 peers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Local Distributed

Te
st

in
g

ac
cu

ra
cy

COVID-bias experiment with 2 peers

peer0	most	+

peer1	most	-

Figure 20. Bar plot COVID-biased experiment with 2 peers

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 17

both peers predict the same label, covid negative, for all the testing patients, which reinforces the point made

before.

Compute efficiency

Finally, we wanted to conclude with some numbers on the time overhead that comes from using decentralized

learning. From the experiments we ran, we can say that usually the time overhead for waiting to receive

weights and update them is around 5 seconds per epoch. However, if the weights lower limit threshold (which

is how many weights you want to receive before the averaging) is too high then this overhead can reach the

upper limit of ten seconds per epoch. However, we have observed that when training distributively the model

seems to converge in less iterations than when training locally.

Discussion

Limitations

As has been mentioned before, the app has some limitations with respect to the sizes of the models being

trained and the resources available since the models are trained on browsers and mobile phones. However,

we have not reached the limit yet. We have observed that if we are careful with memory management, we

can in fact train larger models on larger datasets. For example, during the data pre-processing pipeline, we

must be extra careful compared to when we train models in python, by properly deleting tensors when not

used anymore. Moreover, we believe that loading training data in batches will also provide great performance

benefits.

In the decentralised learning part, we also found several limitations. The first is that for the moment there is

no control on which state of the training a peer is currently in, for example, a peer might just be finishing the

training which means that his/her model is already providing good performance, but it might start getting

weights from a peer that just started training and for which the weights are almost random. This will decrease

the performance of the first peer’s model. The second limitation is that for the moment the weight exchange

Figure 21. Peer 0 training curve for the COVID-biased
experiment.

Figure 22. Peer 1 training curve for the COVID-biased
experiment.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 18

is solely done at the end of each epoch, however, for some cases it would be beneficial to exchange weights

in the middle of the epochs, as for the covid-bias experiment.

In addition, during this project, we started the app from scratch, as explained before we even made the mock-

ups, and the time we had was limited so there are plenty of new features that could bring even more value to

the app that we were not able to implement.

Future work

We are excited and optimistic about DeAI since it is setting the foundations to having a great mobile

application for privacy preserving decentralised machine learning for any kind of task. Just to give an

overview at what will come next:

▪ Personalized decentralised learning: we will be able to implement Frédéric Berdoz’s algorithm

on the application and this will bring many new capabilities. It will improve incentivisation and

will allow us to provide feedback to the peers about the quality of the data they are providing.

We plan to display this information in the form of a peers ranking. Moreover, it will also allow

the possibility of doing weighted averaging so that peers’ models that improve your model in

your validation set will have higher weights than the ones which perform poorly.

▪ Enhance privacy: one of the core goals of this app and of using decentralised learning is the

privacy of the data. At MLO, Milos Vujasinovic is working on building an algorithm that will

enhance the privacy of the data so that no information about each peer’s dataset can be deduced

from the model weights.

▪ Tasks with bigger and more complex models: Martin Milenkoski is already working on

implementing Relay SGD in the app to be able to train bigger and more complex models for

more complicated tasks as CIFAR10.

These are just three next steps that will be pursued in the near future, and which really excite us, but this is

just the beginning of DeAI and there is much room for continuing to improve and extend it further.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 19

Acknowledgments

The application described in this report was a joint effort by Paul Mansat (PM) and Marcel Torné Villasevil

(MTV), the author of the report. PM worked on the tabular dataset tasks and on implementing the Titanic

task. PM also was the main contributor to the storage model system, the communication protocol, and the

aggregation method for models and the UI we currently have. MTV worked on the image datasets and on

implementing MNIST, he also built and designed the DeAI’s DeepChest version together with the LUS-

COVID task and was the main contributor for the testing screen. Moreover, MTV implemented an improved

version of the model aggregation, which is the currently deployed one, and made some fixes to the

communication protocol. MTV is also the author of the Mock-ups, the experiments and benchmarks

presented in this report. PM and MTV contributed together to building, modularising and refactoring the

architecture of the app.

I would like to thank Paul for being an incredible teammate while developing this application throughout

this semester, it has been a real pleasure working with him. I would also like to thank my supervisors,

Professor Martin Jaggi and Dr. Mary-Anne Hartley, for all their useful advice and mentorship, it has been a

real honour to be their supervisee. Moreover, I would also like to thank them for trusting me to work on such

an interesting and exciting project. Finally, I would like to thank Martin Milenkoski who joined back DeAI

in the middle of the semester and has really helped us to improve several aspects of the application, in

improving the modularisation, and now by bringing new features to the application.

DeAI: A mobile application for privacy preserving decentralised machine learning for medical image classification

Bachelor Project Report – June 2021 Marcel Torné Villasevil 20

References

Jaggi, M. (2020) DeAI – Algorithms for Decentralized Artificial Intelligence. Part B2: The scientific

proposal. ERC Consolidator Grant 2020

Nedić, A. et al. (2018) “On Distributed Averaging Algorithms and Quantization Effects.” IEEE
Transactions on Automatic Control 54 (2009): 2506-2517. Online: https://arxiv.org/pdf/0711.4179.pdf

Berdoz,F. (2021) Quantifying Peers Contribution in Fully Decentralized Learning, Semester Project at iGH –
MLO, EPFL, unpublished work.

Vujasinovic, M. (2021) HyperAggregate: A sublinear secure aggregation protocol, Semester Project at

DeAI – MLO, EPFL, unpublished work.

Data source repository:

● Deepchest repo: https://github.com/epfl-iglobalhealth/LUS-COVID-main/tree/master/deepchest

● DeAI repo: https://github.com/epfml/DeAI

● LUS-Covid dataset https://github.com/epfl-iglobalhealth/LUS-COVID-main/tree/master/dataset

● LUS-DeAI benchmarking & DeAI’s Deepchest model repo: https://github.com/epfl-

iglobalhealth/LUS-DeAI

● PeerJS DeAI - MLO: https://github.com/epfml/DeAI/tree/master/experiments/peerjs

Marcel Torné Villasevil and Paul Mansat (2021) DeAI live version: https://epfml.github.io/DeAI/

