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Abstract—Designing controllers for Dual-arm robots brings
another level of complexity to the system design over a single-
armed robot. In this work, we look into several techniques for
controlling a dual-armed robot system in performing various
manipulation tasks. We propose three different controllers for a
dual-armed robot system: 1) separate controllers for each arm
with assumptions on the workspace, 2) separate controllers with
a communication channel between them, and 3) single controller
for both arms. We constructed a series of manipulation tasks
to check the advantages and disadvantages of each approach
and concluded with a comparison between them. Our code is
available at github.com/idanshen/Bi Manual Robot

I. INTRODUCTION

As robots become more available, the variety of problems
researchers try to solve with them grow. One robotic arm
is insufficient for some of these problems; therefore, it is
common to see dual-armed robotic systems. There are several
advantages of using a dual-arm robot rather than a single
arm. First, it allows the robot to control both parts of the
same task, for example, a typical peg-in-hole task, with one
arm positioning the peg and one arm the hole. On similar
notes, some tasks might require more than a single arm,
for example, picking up a big box. Another advantage is
operating in environments built for humans that, by nature,
are made for dual-arm manipulation. Finally, they allow
the robot to perform the same tasks at twice the speed of
operating in coordination. [3]
Along with its usability, the dual-arm configuration increases
the complexity of designing a controller for the robot.
Controlling each arm separately without considering the
maneuvers of the others constrains the family of tasks one
can solve. Having a single controller for both arms is a
common approach [4] but introduces some difficulties. For
dual IIWA robots, for example, the number of degrees
of freedom goes from 7 for a single arm to 14 degrees
of freedom for a dual arm. Furthermore, new constraints
appear, such as a collision between the two arms. Unlike
collision with a static object, the fact that both arms move
simultaneously makes the motion planning optimization
problem harder. In addition, executing maneuvers with
precision, both in time and space, becomes more important.
For example, if we want to pass an object from one robotic
hand to the other, the temporal and spatial coordination must

be accurate; otherwise, the maneuver will fail. This requires
the controller to react quickly, constraining the complexity
of the algorithms it can run. Because of the complexity of
designing a single controller, another common approach is to
have two separate controllers, each in charge of a different
arm but with some communication channel between them [3].
This approach makes the design of such a controller simpler.
However, it introduces limitations over the manipulation tasks
and coordination that the overall system can do since we
limit the amount of data the robots can transfer. In this work,
we investigated those design choices. In order to get insights
into the advantages and disadvantages of each approach, we
implemented three manipulation tasks for dual-arm robots
that helped us study each approach.

Fig. 1. The manipulation tasks that were implemented as part of this project.
(From top-left clockwise) Asynchronous pick-and-place; Pick-and-place in
tight space; Passing an object from one arm to another.

II. RELATED WORK

There is abundant work on dual-armed robots, going all
the way back to the 1950s [5]. In the robotic literature,
it is commonly assumed that a single system control both
arms [3]. Because of the complexity it introduces, a lot of



attention was given to the right way to do motion planning in
such a high-dimensional space [6]–[8]. Separate controllers,
with or without communication channels are usually studied
under the scope of multi-agent systems [9]. There, a separate
controller is in charge of every robot. However, usually, each
robot has some information about the other, either through
its sensors, communication channel, or prior assumptions [10].

III. METHODS AND TESTING ENVIRONMENTS

In the following section, we will describe the various design
choices we studied for dual-arm robot controllers and the use
cases we used in studying them. All of our experiments have
been done using Drake and two instances of the KUKA IIWA
7-DOF robot to create a dual-arm robotic system. To control
the IIWAs, we used Drake’s Differential Inverse Kinematics
Integrator which enable us to command the end effector of the
IIWAs using position control. One of our assumptions in this
work is that sufficient coverage using calibrated depth cameras
exists in the workspace.

A. Separate controllers with assumptions on the workspace

For the first method, we designed a system where the two
arms would work independently using separate controllers,
without any knowledge of the maneuvers of others. The task
we chose was picking objects from the same bin and placing
them into another. To avoid collisions, we introduced some
assumptions about the workspace of each arm. We assumed
that each arm will not cross the halfway line between their
two bases. To achieve this end effector geofencing, one robot
would select grasps from the left-hand side of the source bin,
and the other would select grasps from the right-hand side of
the bin. Once the object was grasped, the end effector was
commanded to a distinct safe location. Once an end effector
arrives at the safe location, it follows a pre-planned path
to its drop-off location. After the block is dropped off, the
pre-planned path is reversed. This achieves the behavior of
geofencing without the need to switch to a path planner that
solves a constrained optimization problem.
The planner we implemented was based on the one presented
in [2], chapter 5. The point clouds generated by each of
the cameras were then fused into a unified representation
of the environment. Afterward, normals for each point were
generated by fitting a plane to the cloud of points in a small
area around it. Using this representation of the objects in the
bin, an algorithm generates a series of candidate grasping
points and compares them using a hand-tailored cost function.
Each candidate grasping pose is an antipodal grasping aligned
with the normal of a random point on the object. After a
grasping position is selected, a path is planned to the grasp
pose using linear interpolation from the current location
of the end effector. To bring the object from one bin to
another a series of intermediate frames are generated since
direct interpolation will result in a collision with bin walls
or the cameras. This is the part in the algorithm where we
used the assumptions about the workspace of each of the

arms to avoid a collision. A similar planner is the base of
the algorithms we will present for the other controllers as well.

B. Separate controllers with communication channel

The third design option for controlling a dual-arm
robot we checked in this work is separate controllers with
communication channels between them that allow them to
transfer needed information. To study this type of controller,
we designed the following task - the first robotic arm needs
to pick up an object from the first bin and pass it to the
second robotic arm, which will place it in the second bin.
The object is being passed directly from one robotic arm
to the other without being set down, similar to the problem
described in [1]. Moreover, the two bins are far apart, so
a single robotic arm cannot accomplish this task alone. As
with all other tasks in this project, we assumed a sufficient
coverage of depth cameras. We chose this task because it
represents a practical and useful problem. Using both robots
enables a larger workspace than a single arm can have.
This task has two main technical challenges - executing
coordinate movements between the robot and computing valid
grasping positions for the hand-over.

1) Coordinated Movement: The receiver arm should grab
the object only after the other arm has reached the hand-over
position and stopped moving. Only after the receiver arm
gets a hold of the object the other arm should start to release
it. To solve this problem, we established a communication
channel between the two controllers that pass two basic
signals - when the first arm is in position and after the second
arm grabbed the object. The communication channel was
implemented using two binary input-output ports between the
controllers.
Since the object can be passed back and forth between the
bins, the controller for each arm is identical, and its general
control scheme is described as a state machine in figure 4. The
controller is aware of its current job as the object’s GIVER or
RECEIVER. While the GIVER picks the object from the bin
and carries it to the hand-over area, the RECEIVER moves
to a waiting position to shorten the time it will take to reach
the object. After the GIVER reach its position, it sends the
relevant signal and waits there. The RECEIVER queries a
valid grasping position (see more details in the next section)
and moves to grab the object. When the object has firmly
grasped, a signal is sent to the GIVER to release the object.
After dropping the object at its bin, the two arms change
their roles.

2) Generate grasping positions: Since the items passed
between the robots are relatively small, there is a need to
carefully choose the grasping poses for the arms. For gener-
ating the grasping position for the first arm, we followed the
algorithm described in [2], chapter 5. The only difference was
that instead of adjusting the gripper to be on the center of
the object, we chose to center it around its upper half. That



Fig. 2. Rollout sequence for each controller on its designated task. The timestep of each episode goes from left to right.

Fig. 3. State machine for the single controller with a communication channel.
Each controller is aware of its current role as the GIVER or RECEIVER of
the object.

way, the first gripper leaves more space for the second gripper
to get a hold of the object. After the first arm got into the
hand-over areas, a point cloud of its gripper and the object
was extracted using three cameras that were positioned around
that area. Based on the gripper’s position and the opening of
the gripper’s finger, our algorithm separated the points that
belong to the gripper from those of the object, See figure 4
for example. Then, a series of random points on the object on
the object, and each one is examined as a potential candidate
for being one side of antipodal grasping. This examination

Fig. 4. An example of pointcloud decomposition obtained during the
collaborative grasping algorithm.

contains three parts:
1. Giving the known shape of the gripper and the candidate
gripper, there is a check that there is no collision between the
gripper and any point in the point cloud.
2. Under the assumption of maximum opening of the gripper
fingers, there is a check that none of the points that belong to
the other gripper reside between the first gripper fingers.



Algorithm 1 Generating Grasping Position for Hand-over

Input: point cloud Ps, GIVER Gripper frame XGIV ER
G ,

cost weights W1,W2,W3, number of points
2: poses← []

costs← []
4: Psobject, Psgripper ← SplitPointCloud(Ps,XGIV ER

G )
for d = 1, 2, . . . ,number of points do

6: idx← RandomInteger(Psobject.size)
Np = Normal(Psobject[idx])

8: Gx = Np

Gy = [1, 0, 0]− ([1, 0, 0]TGx) ·Gx
10: Gz = Gx×Gy

XWG = [RotationMatrix(Gx,Gy,Gz), Psobject[idx]]
12: if Collision(XWG, Ps) or

IsBetweenFingers(XWG, Psgripper) then
poses← XWG

14: costs←∞
break

end if
16: poses← XWG

costs←
ComputeCost(XWG, Np, X

GIV ER
G ,W1,W2,W3)

18: end for
MinIdx← argmin(costs)

20: return poses[MinIdx]

3. A cost function is calculated the help choose between all
the feasible candidates:

C = −W1 · [1, 0, 0]T (RG · [0, 1, 0])−W2 · |Np
TRGx

|2 (1)

+W3 · |RGx

TRGIV ER
Gx

|2

Where RG is the rotation matrix of the gripper, RGIV ER
G

is the rotation matrix of the other gripper that currently
holds the object, Np is the normal of the chosen point, and
W1,W2,W3 are the weights assigned to each cost term.
Subscript x symbolize the x-axis vector of the rotation matrix.
The first cost term penalize deviation of the gripper from
a horizontal position, the second one penalizes deviation
from being parallel to the normal, and the last cost term
rewards the grip position to be perpendicular to the gripper
that currently holds the object. The overall algorithm for
generating grasping position is described in algorithm 2.

This task clearly demonstrates the usefulness of this con-
troller’s design approach. Since each robot operates around its
bin, with only the hand-over area in common, there is almost
no risk of collision between the arms. Therefore, motion
planning in the joint space only adds unnecessary complexity
to the controller. The amount of information that needs to be
shared between the robots is minimal and contains only two
binary signals that can be quickly and efficiently transmitted
over a communication channel.

C. Single controller

The second design option we explored was a single con-
troller to control both arms. Having a single controller means
we have complete information about the state of the two arms
at every point in time so that we can plan accordingly. To test
this approach, we designed the following task: Moving objects
from one bin to the other, where one arm moves objects from
bin 1 to bin 2 while the other arm moves objects in the opposite
direction. Moreover, the bins and robots are located near each
other, which requires both arms to operate in the same space.
This benchmark is prone to many collisions since, without a
collision avoidance mechanism, the trajectories are crossing
most times.

1) State machine: Perfect synchronization between arms
and a clever path-planning algorithm will solve the problem.
The first key is the state machine we designed, which can be
seen in figure 5. After each grasping and dropping, the arm
that finishes first will wait for the other arm to finish its task.
Each arm will wait on top of the bin they were targeting for
the grasp. If they were dropping/grasping on that bin, the arm
would wait on the same bin for the other to finish. Finally,
if the grasping was unsuccessful, the arm that failed would
retry the grasping procedure. This synchronization allows us to
have more complicated tasks, with more freedom on where the
arms can move or grasp objects from but restricting freedom
in timing.

Fig. 5. State machine for the bi-manual manipulation with a single controller.

2) Joint motion planning: The first solution we imple-
mented to avoid collisions was adding a clearance point that
was far apart enough for each arm not to collide when moving
simultaneously from one bin to the other. This solution is
similar to the approach used in the last section. After imple-
mentation, we found three main downsides to this approach.
First, we need to hand-design the clearance point, which will
change for each environment configuration. Second, depending
on the space, having this clearance point might not be enough
to avoid collisions. Last, making each trajectory pass through
this clearance point makes the trajectories suboptimal in time.
Therefore, to solve these three issues, we designed a new
recursive algorithm that optimizes the trajectory for both arms
simultaneously while avoiding collisions between them. In this



way, after grasping or dropping the object from a bin, both
arms will rollout a collision-free trajectory taking into account
the other arm. This algorithm is presented in 2. Given a starting
and end frame for each one of the arms, we return a series of
subframes that will guide both arms to reach the goal without
collisions between the end effectors. Finally, after getting the
key subframes, we finish by interpolating between them using
linear interpolation.

The optimization problem we need to solve is presented
in III-C2. It consists of a cost minimization problem, where
we have a quadratic cost with quadratic constraints. Those
optimization problems are known as Quadratically Con-
strained Quadratic Programming (QCQP) [11] and have well-
established solvers. We used the solver implemented natively
in Drake mathematical program solver. At each iteration, we
minimize the distance between the starting point and the target
point as well as the endpoint for each arm. Then we set
constraints for this target point to be at the same distance
between the start and end frame in order to make the recursive
interpolation stable. Finally, but most importantly, the last
constraint is that both frames for the arm have to be separated
by a minimum distance. We chose this distance based on the
size of the end effector to ensure there will not be a collision.
The overall optimization problem is:

minxyz||p1 −Xstart1
G ||22 + ||p1 −Xend1

G ||22 (2)

+||p2 −Xstart2
G ||22 + ||p2 −Xend2

G ||22
s.t.||p1 −Xstart1

G ||22 = ||p1 −Xend1
G ||22

||p2 −Xstart2
G ||22 = ||p2 −Xend2

G ||22
||p1 − p2|| > d

Where p1 and p2 are both three-dimensional vectors
representing the target point or translation of the frame
we are searching for, in world coordinates for each arm.
Xstart1

G ,Xstart2
G and Xend1

G ,Xend1
G are the starting and ending

frames for each arm that we are interpolating between, and d
is the minimum distance required between end effectors.

As the reader would notice, in the current implementation
of our algorithm we do not take into account the whole arm
but only the end effector. This means that our algorithm will
return non-colliding trajectories for the end effector position
of each arm, however, the arms might still collide on other
parts of the other arm. The direct way to solve this issue is to
add more constraints to the optimization problem. However,
this will require changing our controller from position control
using differential inverse kinematics to full joint control. We
believe that it is doable but because of time constraints and
since it didn’t serve our main goal of comparing different
ways to control a dual-armed robot we left it for future work.

Committed to still being able to provide a reliable solution,
we added a geofencing constraint to the optimization problem,
which will pull each end effector to a specific region so
that the two arms will not get tangled. These constraints
are defined through a vertical plane splitting the boxes by

Algorithm 2 Recursive bi-manual end-effector path-planning
optimization

1: Input: start frame arm 1 Xstart1
G , start frame arm 2

Xstart2
G , end frame arm 1 Xend1

G , end frame arm 2 Xend2
G ,

depth, start time, end time
2: frames← [(Xstart1

G , Xstart2
G ), (Xend1

G , Xend2
G )]

3: times← [start time, end time]
4: for d = 1, 2, . . . , depth do
5: N ← frames.size
6: new frames← []
7: new times← []
8: for i = 1, 2, . . . , N do
9: Xmid1

G , Xmid2
G ←

SolveMathematicalProgram(Xi1
G , Xi2

G , Xi+1,1
G Xi+1,2

G )
10: new frames← (Xi1

G , Xi2
G )

11: new frames← (Xmid1
G , Xmid2

G )
12: new times← timesi
13: new times← timesi+timesi+1

2
14: end for
15: new frames← (XN1

G , XN2
G )

16: new times← timesN
17: frames← new frames
18: times← new times
19: end for
20: return frames, times

half along the symmetric axis. In the case of our current
configuration this plane is defined by x − y = −0.5 but it
can be computed for each scenario based on the arm’s base
location. We want to emphasize that we should only use
this as a temporal solution since it is a problem specific,
but adding the collision constraints on the whole arm would
be more generalizable. In Figure 6, we show the trajectory
for one of the arms with the ”invisible wall” visualized in pink.

Our algorithm represents the advantages of having one
controller for both arms. The path planning not only takes into
account the other arm’s location but actually plans both trajec-
tories simultaneously. This leads to a successful, collision-free
operation in a relatively small workspace. On the other hand,
the overall controller is rather complicated and requires solving
a series of optimization problems each time an arm needs to
grab an object.

IV. RESULTS

1) Separate controllers with assumptions on the workspace:
The separate controllers without information about each other
were very effective in moving objects from one bin to the next.
However, they worked only because of the careful design of
the workspace and the solution was tailored for this specific
case. Adjusting our planner to another configuration will
require designing the motion planning path anew and in many
situations will not be feasible at all. On the other hand, having



TABLE I
A COMPARISON BETWEEN THE DIFFERENT TYPES OF CONTROLLERS:)

Method Advantages Disadvantages
Separate controllers Simplicity Will not work in most tasks and require tuning for

with assumptions on the workspace every environment configuration
Separate controllers Simple controller but support cooperation The amount of information shared is limited,

with communication channel not suitable for every task
Single controller Enable full cooperation and coordination Require solving a hard optimization problem

requires direct joint control

Fig. 6. A trajectory calculated by our path-planing algorithm, with the virtual
wall visualized in pink

separate and simple controllers make debugging and adding
new features easy, an important quality in system design.
Although our system is able to perform the task successfully
in most cases, there were still some failure cases. If objects
are distributed unevenly, one arm may perform all of the work
while the other remains idle. Additionally, since there must be
some tolerance between the geofenced areas, there are dead
areas where either robot will not grasp the objects placed there.

2) Separate controllers with communication channel: Re-
garding the third task, we tested our implementation on various
objects from the YCB object dataset. We found that our
controller achieves quite a reliable result, successfully passing
the object from bin to bin in 26 out of 30 experiments.
The failure cases were mainly problems during the object’s
passing from one gripper to another. While releasing the object
and moving backward, the first gripper sometimes pushes the
object and makes it fall from the second robot’s grip. A more
careful motion planning algorithm that considers the object’s
shape can remedy this problem. Another drawback of our
algorithm is the time it requires to calculate the grasping pose.
On our workstation, it took an average of 2.5 seconds to find
a valid pose while the two arms were waiting in position. The
main problem is for the calculation to begin, the arm with the
object has to stop so that the cameras will see the object’s

position.
3) Single controller: The second task was successful in

moving objects from one bin to the other with both arms
executing the task at the same time and crossing paths. We
successfully managed to remove the overhead of hand-crafting
the geofenced areas since our new algorithm optimizes the
paths for both arms at the same time to avoid collisions. In
Figure 7, we can see two successfull trajectories for the bi-
manual system that will allow them to move to the other bin
without colliding. Nevertheless, as we mentioned before, we
had to add some additional constraints to our optimization
problem due to the fact that we performed position-based
control and not direct joint control. Due to time constraints,
we could not implement these but we believe that when these
are added then this method should produce non-colliding paths
for the dual-arm system without the geofencing constraints we
introduced to make the demo. One drawback of our algorithm
is that it can lead to some abrupt movements. In the middle of
the trajectory, there sometimes is an abrupt bump to avoid a
collision between both arms. There is no penalty for an overall
smooth curve since each frame is optimized independently of
the rest. Furthermore, this abrupt behavior is also seen in the
timing of the trajectories; Again, our optimization has no view
of the whole trajectory but plans each time step independently.
We believe this could be improved by adding an additional
layer of optimization that will take the whole trajectory into
account and will refine all frames to avoid the mentioned
issues and leaves it open for future work.

4) Comparison and Discussion: Table 1 summarizes the
advantages and disadvantages of each method we checked.
Our overall conclusion is when the information that each arm
has to know about the other is limited is best to use separate
controllers with a communication channel because it keeps
each controller simple but still supports coordination. How-
ever, in the most common scenario where collision between
the arm is a real risk, one controller with full information on
the state of both arms is the best approach.

V. CONTRIBUTIONS

This project is divided in three main parts: 1) the separate
controllers with assumptions on the workspace, 2) the separate
controllers with communication channel and 3) the single
controller. Alex was in charge of the separate controllers with
assumptions on the workspace and coding the corresponding
benchmark together with its corresponding part in the video
and report. Idan was also in charge of the separate controllers



Fig. 7. An example of a successful trajectories for the dual arm robotic
system.

with communication channel together with the associated
benchmark and corresponding section in the presentation and
report. In addition, Idan developed the proposed bi-manual
grasping algorithm and the ideation was done together with
Marcel. Marcel was in charge of the single controller also with
its corresponding benchmark and section of the presentation
and report. Moreover, Marcel was in charge of developing the
algorithm we proposed for recursive bi-manual end-effector
path planning optimization, and the ideation was done together
with Idan.
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