
Multi-agent Reinforcement Learning for Collective Transport

Marcel Torné Villasevil
marcel tornevillasevil@g.harvard.edu

Harvard University

Abstract

We apply the Deep Deterministic Policy
Gradient (DDPG) Reinforcement Learning
algorithm to a challenging task in robotics
which is the one of Collective Transport.
More concretely, the task consists in hav-
ing a robot swarm move a box to a tar-
get point. We develop two RL models, the
first one for a single agent and the second
one for a robot swarm, which was tested
with up to 3 robots. Both models success-
fully solve the task. Furthermore, we de-
sign a benchmark algorithm based on the
occluded area algorithm by Chen et al. Fi-
nally, the models are trained and ran using
the ARGoS simulator.

1 Introduction

We have dreamed about having robots com-
plete tasks that are impossible to humans or to
enhance human performance. There are cur-
rently two tendencies towards achieving this,
the first one is to build very complex robots
that have super-human capabilities. The sec-
ond one, and the one we believe will exist ear-
lier is to have swarms of simple robots which
together can achieve super-human capabilities.
Ant-colonies are clear examples that this is
possible. We believe collective transport is a
good starting point for observing such desired
swarm behavior and this is what we will be
focusing on in this paper. When these multi-
robot systems are capable of successfully per-
forming collective transport they will help hu-
mans in many tasks. From automation in con-
struction to rescue missions.

As robots and environments become more
complex we will arrive at a point where
human-designed algorithms will not be possi-
ble to design or it will take us too long to find
a good one. We believe the solution will be
to use Machine Learning and more concretely

Reinforcement Learning. In this paper, we
are setting a baseline to build upon so that
in the future such a technique can be gener-
alized to more complex tasks, environments,
and robots. To the best of my knowledge,
the approaches that have been taken previ-
ously consisted in building deterministic algo-
rithms designed by human researchers, and we
will be the first to train an end-to-end system
using Reinforcement Learning. We train an
RL model that will control in a decentralized
manner a swarm of robots (of up to 3 robots)
to collectively transport an object to a target
point. 1

2 Related Work

During the last years, the field of Machine
Learning and more concretely Deep Learning
has been expanding extremely fast and has
obtained some incredible results. More con-
cretely many of these advances have happened
around the field of Reinforcement Learning
(RL). Researchers at Deepmind have pushed
this field to the other level by first beating the
best human players in the game of Go [7], con-
tinuing by beating the best humans at Star-
craft [9] and now being closed to solving the
big challenge of protein folding, all of this us-
ing Deep Reinforcement Learning. This is why
we believe that using Reinforcement Learning
we should be able to solve many other chal-
lenges and in particular the problem of collec-
tive transport in robotics. To the best of our
knowledge, we will be the first to solve this
problem uniquely using RL from end to end.

In the past, some papers have already
tried to achieve collective transport by robots.
Chen et al. designed and proved the validity

1The code from this paper can be found in the
following GitHub repo:
https://github.com/MarcelTorne/RLCollectiveTransport

1

of an algorithm that achieved collective trans-
port in a fully decentralized way with minimal
communication among agents. Bloom et al.
[2] developed an algorithm for collective trans-
port where each agent would have different
predefined roles to play a game (as a pusher,
defender ...) and these roles were chosen us-
ing RL. To solve the game they designed, the
robots had to collectively transport and object
to a given goal. This research has been very
useful for us since the experiments are con-
ducted using the ARGoS simulator [6]. Hence
it was a base to build upon our experiments
without having to reinvent how to introduce
the RL models into this experimental design.
Our work will differ from this last paper in
that our RL algorithm will completely control
the robots from the receival of the inputs to
the actions that these will take.

3 Methods

In this section, we will give a detailed explana-
tion of how the project was designed. We will
not go deep into coding technicalities since we
do not believe it gives much value to the pa-
per. Nevertheless, the code written for this
paper can be found on the GitHub repository
for which the link is given on the first page of
this paper.

3.1 Project Design

The project design is depicted in Figure 1.
We have two main components: the environ-
ment’s simulation and the RL model. These
two main components will be completely sep-
arated into two processes. On one side we will
have the environment’s simulation developed
using the ARGoS simulator where all of the
code is written in C++. On the other side,
we will have a second process running the RL
model, coded in Python and using the Keras
library [3]. These two processes will have to
communicate between them. On one side, the
simulation process will send information to the
RL model’s process about the state of the en-
vironment and the corresponding reward for
a given action. On the other side, the RL
model’s process will communicate which ac-
tions should be taken given a state. This inter-
process communication is performed using the

ZeroMQ library 2, which is an open-source uni-
versal messaging library.

3.2 Simulation

In this section, we will proceed by explaining
the implementation of the simulation using the
ARGoS simulator.

3.2.1 Implementation details

In Figure 2, we can see a simplified overview of
the file structure. This is what has been used
in the project and it is specific to the ARGoS
simulator, however, we believe it is very easily
generalizable to other simulators as Webots,
for example.

The ”main.cpp” file is the main file and is
the one that is executed when we want to start
the simulation for training the model. This
file mainly consists of an instantiation of a
CRL object, defined in the ”rl.cpp” file and it
will launch sequentially as many simulations
as specified in the un generations parameter.

The ”rl loop function.cpp” file corresponds
to the definition of a single episode. This
file defines the behavior for each step of the
episode, the initial setup of the environment
and the cleanup to be performed when the
episode ends and has to be reset. Furthermore,
from this class, we have a global overview of
the whole arena and the position of the differ-
ent entities (robots, box, target light). Hence,
it is the place where we will compute the re-
wards for each robot and where this informa-
tion will be sent to the parallel process running
the RL model. This information will be sent
once at the end of each step through a single
message. This message will have the form of
an array with the form of [robot id: associated
reward].

The ”rl.argos” file is where the configura-
tion of the arena and the simulation is spec-
ified. In this file, we set the dimensions of
the arena, the different entities that will be
instantiated (robots, light, and box), the sen-
sors used by the robot. This is the file that
is specifically used for training and hence, we
disabled the visualization since this makes the
simulation run more slowly and would be an
overhead for training. However, since we want
to see how the model is performing, we have an

2https://zeromq.org

2

Figure 1: The project code is designed in two different processes. The one on the left represents the
process running the simulation, using ARGoS and written in C++. The one on the right represents the
process running the RL model written in Python and using the Keras library.

Figure 2: File organization for the simulation in ARGoS. The main file schedules each episode for a given
number of generations. The loop function is equivalent to one episode, it has a global view of the arena
and its entities, and it sends the reward to the RL model. The ”rl.argos” is a file specific to ARGoS that
handles the definition of the environment. The controller controls the robot, sends the observed state to
the RL model, and receives action to execute from it.

3

Figure 3: The foot-bot is the robot used in this
project. The sensors used are an omnidirectional
blob light camera and 4 proximity sensors. The
steering wheel actuator is the only actuator used.

additional file ”rl-trial.argos” where the con-
figuration is the same as for the ”rl.argos” file
with the sole difference that the visualization
is enabled and hence we will be able to use it
to observe the learned model.

Finally, the ”footbot rl controller.cpp” file
defines the class that will be run to control
each robot. The scope of the class is restricted
to each robot and it is the place where we
read the sensors to get the current state of the
robot. Once we have the state, this is sent to
the RL model process and we wait to receive
a reply that will come with the action. This
action is then executed by the robot.

3.2.2 Robot

The robot we are using is defined as the foot-
bot in the ARGoS simulator and is based on
the MarXbot [1]. More importantly, is the sen-
sors that we are using, which are visible in
Figure 3. Since, as we mentioned before, we
are basing this algorithm using the occluded
area idea, we are mainly going to work with
light sensors. The light sensor we are using
is an omnidirectional blob light camera. This
is a light sensor with the additional qualities
that it can differentiate between different col-
ors for the lights and it has also 360-degree
coverage. Secondly, we use four proximity sen-
sors, placed 90 degrees from each other around
the robot. These were added thinking about
collision avoidance by these robots. Finally,
we are using a single actuator on the robot
and this is the steering wheel actuator, which
is used to set the speeds of the left and right

Figure 4: Overview of the components needed for
training RL models. And environment informs
about the state and rewards given an action and
the agent learns to predict the best action from a
given state.

wheels of the robot.

3.3 Reinforcement Learning

Recall that the goal of this project is to build a
Reinforcement Learning model that will con-
trol the robots in a decentralized manner to
perform a collective transport task. Hence, in
this section, we will start with a summary of
the Reinforcement Learning framework. We
will continue by going deeper into the impor-
tant sections of the RL framework, starting
with exploring the design of the environment,
continuing with the controller of the robots,
the RL algorithm we chose to use, and finish-
ing by the approach we took to make the learn-
ing of a policy possible within the resources
available.

A Reinforcement Learning model consists
in learning a policy that will return the best
action to take given a state, it can be seen
as a Markov Decision Process. For learning
such policies we need a simulated environment
where the model, more concretely the Actor
model, will observe different states, then try
an action and observe the reward given by
the environment. In Figure 4, we can see this
interaction between the Actor model (Agent)
and the environment.

The reward is a very important part of train-
ing RL models, this one is defined given a state
and an action and the goal of the agent will be
to maximize it. Designing good reward func-
tions is something very important and is nec-
essary for learning proper policies.

Furthermore, these RL models contain a
second important component, besides the Ac-
tor: the Critic. This model predicts how well

4

each action is given a state and an action.

Finally, we want to emphasize two technical-
ities of training these RL models. First, is the
usage of two pairs of neural networks for the
Actor and the Critic: the Target-Actor/Actor
and the Target-Critic/Critic. This is used for
training stability, the reason being that we will
update much more quickly Actor and Critic
networks and then we update more slowly the
Target-Actor and Target-Critic. In this way,
the training is more robust to the agent ex-
ploring many bad actions in a short amount
of time such that the target network does not
get completely biased. The second technicality
is the usage of an Experience Replay Buffer,
the tuples of actions, states, and rewards are
kept in a buffer so that the gradient descent
step over the networks can be performed us-
ing many previous states and not just the last
one. Again, this makes it more robust and re-
duces variance if a bad action/state is explored
in the last step for example.

3.3.1 Environment

The environment is one of the key components
in the RL framework. The environment we de-
signed consists of a 30 by 30 unit sized arena,
with walls as boundaries. Moreover, it con-
tains three different types of entities. The first
is the target light, this represents the point
where the robots have to move the box to.
It emits a yellow light and is centered at the
point (5,5) and 0 in height. The second com-
ponent is the box, which has dimensions 1 by
1 unit, height 0.3 units, and starts centered at
(6,3). This box is surrounded by 12 lights, 3
lights placed at each vertical face of the box
in positions [-0.4,0,0.4] units from the center
of the phase and height 0. These lights are
used by the robot to detect where the box is.
Recall that we are not using a camera but a
blob light camera that only detects light sig-
nals. Furthermore, we colored these lights in
blue so that we could differentiate that this
light comes from the box and not from the
target light later in the signal processing at
the robot controller. And all the lights are
placed at height 0 because otherwise, the blob
light camera will not detect them. Finally,
the last entity corresponds to the robot, and
as we mentioned earlier, we used the foot-bot
equipped with the mentioned sensors.

Figure 5: Screenshot of the environment used for
the simulations. It consists of a target light (yel-
low), a box to be moved (red), robots to perform
the task (blue).

Furthermore, when designing an RL envi-
ronment we have to properly define the input
and action space. In our case, the input space
corresponds to the readings of 4 proximity sen-
sors, with values between 0 and 1, a 2D vector
to the target light, and a 2D vector to the clos-
est light from the box. These 2D vectors are
represented in the form of an angle with re-
spect to the robot and a distance. The positive
aspect of using such a representation instead
of absolute Cartesian coordinates is that we
do not need to know the absolute position of
the robot in the arena but we can simply work
with the observed angle. This implies a sim-
plification in the learning of the policy since
more information is given and this unneces-
sary learning is avoided. The action space,
corresponds to the left and right wheel veloc-
ities of the robot. A screenshot showing the
environment simulated in ARGoS can be seen
in Figure 5.

3.3.2 Algorithm: DDPG

The RL algorithm used in this paper is the
DDPG algorithm by Lillicrap et al. [4]. The
DDPG algorithm is shown in Algorithm 1. It
consists in learning optimal critic and actor
networks. The reasons why we used this spe-
cific algorithm are that it has already been
tested in many scenarios and it managed to
obtain good results. Furthermore, this algo-
rithm to the difference of other algorithms as
DQN [5] has the property that it works for en-
vironments with continuous action and input
space, which is exactly our case.

For Reinforcement Learning models to learn

5

Algorithm 1 DDPG: Deep Deterministic
Policy Gradient

Randomly initialize critic network
Q(s, a|θQ) and actor µ(s|θµ) with weights
θQ and θµ

Initialize target network Q′ and µ′ with
weights θQ

′ ← θQ, θµ
′ ← θµ

Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action
exploration
Receive initial observation state s1
for t=1, T do
Select action at = µ(st|θµ) + Nt ac-
cording to the current policy and ex-
ploration noise
Execute action at and observe reward
rt and observe new state st+1

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N tran-
sitions (si, ai, ri, si+1) from R
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ′)|θQ
′
)

Update critic by minimizing the loss:
L = 1

N

∑
i(yi −Q(si, ai|thetaQ))2

Update the actor policy using the sam-
pled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ
(
s, a | θQ

)
|s=si,a=µ(si)

∇θµµ (s | θµ) |ss

Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

θµ
′ ← τθµ + (1− τ)θµ

′

end for
end for

Figure 6: Neural Network architecture used for the
Actor model.

the best policy, there has to be a trade-off be-
tween exploration and exploitation. For this
reason, the action exploration noise is a very
important factor in these algorithms. We de-
cided to use the Ornstein–Uhlenbeck process,
the most common exploration noise in these
settings.

Two important components of the DDPG
algorithm are the network used for the critic
and the one for the actor. Since it can be
very tedious to construct and fine-tune such
networks we decided to reuse some of the
most common settings that have already been
proven to work in other environments. More
concretely we used the one used in the DDPG
paper by Lillicrap et al. The critic network
remained very similar, only the input layer
was modified to have as many nodes as ac-
tions and state signals (10). However, we had
to tweak the actor-network more. First, both
the input and output layers had to be mod-
ified to have the number of input signals for
the input layer (8) and the number of ac-
tions for the output layer (2). Furthermore,
we changed the activation function in the out-
put layer to a sigmoid function. The reason
is that we will interpret the output as the ve-
locity of the wheels and we want this to be
between [0, MAX VELOCITY]. Hence, if we
use the sigmoid function we will get an out-
put between [0, 1] and then we just have to
multiply by MAX VELOCITY to have it in
the desired scale. The resulting network is de-
picted in Figure 6.

6

3.3.3 Improving training

Training Reinforcement Learning models is
not a trivial task and always comes with some
tricks that will make the learning of the pol-
icy much easier. After trying different ideas
we observed that some methods would help us
achieve the desired result. First, we did not
train the robot swarm collaboratively from the
very beginning but instead, we trained a model
for a single agent, that could achieve the de-
sired task. Once we had such a model, we
fine-tuned it by training it in a robot swarm.
Furthermore, when training in a robot swarm,
one single instance of the model will be run-
ning and providing the actions to each robot
given their local state. This will also speed
up training and make the model more robust
since it should generalize to all robots, no mat-
ter where they are positioned.

3.3.4 Computing Resources

We had a limited amount of computing re-
sources to run the experiments. Hence, train-
ing the models and running the simulation was
completely done on our local computers. This
is clearly a limitation for the complexity of the
model we are going to be able to train. With
more computing resources we would have been
able to run the simulations for longer and
hence we would hopefully see even better be-
haviors emerge from this training. Further-
more, we really felt that the limited computing
resources were a bottleneck with respect to the
size of the robot swarm that we could train.
We had to limit ourselves to running it with
3 robots but it would be very interesting to
see the emerging behaviors with much bigger
swarms. Despite that, we still got some very
interesting results that are presented next.

4 Results

In this section, we are going to present the
results obtained. The first result will present
will be our benchmark algorithm which was
developed to prove that a policy existed to per-
form such a task with the given sensors. We
will continue by presenting three results using
the RL models. The first model of these three
controls the robot to move to the light. The
second controls a single robot to move the box
to the light. Finally, the third one controls the

robots in a swarm to move the box to the light.

4.1 Benchmark

Algorithm 2 Collective Transport Controller
Benchmark

while episode not ended do
if target light is seen then
SetRandomWalk();
ObstacleAvoidance();

else if box is seen then
MoveTowardsBox();

else
FullRotation();

end if
end while
return ;

We designed a benchmark algorithm to
show that it was possible to have a policy
working with the given sensors and the de-
signed environment. Our algorithm was in-
spired by the Chen et al. algorithm mentioned
before. The idea here is also to have the robots
push towards the box when they find them-
selves in the occluded area. A representation
of this occluded area can be seen in Figure 8.
One first problem that we had to solve was
how do we find this occluded area? Our de-
cision was to make the robots perform a ran-
dom walk until they find themselves in this
desired occluded area. How to perform the
random walk was a second problem to solve.
The way we approached it was to make the
robot move in a straight line and after some
random amount of time, make it turn in a uni-
formly randomly chosen angle between -90 and
90 degrees. Furthermore, we saw that when
performing this random walk, the robots could
actually push the box away from the target
point, hence, what we did to solve this was to
introduce collision avoidance when the robot
was not in the occluded area. Finally, we had
to add one last edge case, which consisted in
performing a full rotation when the robot does
not see the light and does not see the box. This
could happen when other robots are between
the current robot and both the box and the
target light. In this case, we decided to stop
the robot by doing a full rotation until it re-
covers sight of the targets.

7

Figure 7: Frames of steps extracted from a successful collective transport episode using the Benchmark
algorithm.

Figure 8: Representation of the occluded area.

The pseudocode for the benchmark algo-
rithm can be seen in Algorithm 2.

We tried to make the environment as hard as
possible, to make sure that such a policy was
possible. We believed that the way to make
it as hard as possible but still stay within our
setting was to put the robots between the box
and the target light. Since our algorithm was
designed such that the robots had to get to
the occluded area then this seemed the hardest
setting.

We observe in the video3 and in Figure 7

3https://youtu.be/o6TBpNbLeJw

that even though it takes many steps (3200),
the robots accomplish the task.

4.2 Single robot to light

Designing and training RL models is a te-
dious task. To get a working model you first
must be sure that the environment is properly
designed and that there are no bugs. Bugs
can appear in the in the signal processing of
the sensors among many others. Furthermore,
RL models contain many parameters hence
hyper-parameter tuning is necessary, for learn-
ing rates of the neural networks, replay buffer
sizes, gamma for reward discount to name a
few. For this reason, we first tried to train a
model for a simpler task. This simpler task
consisted in having the robot move to the tar-
get light, no box was involved here. The result
can be seen in the video4 and in Figure 9

The working version was achieved with the
following hyper-parameters: critic lr = 0.002,
actor lr = 0.001, gamma = 0.9999 (discount
factor), buffer size = 50000, which were reused
for the rest of the tasks. The reward func-
tion used is presented in (1). Moreover, in
Figure 10, we observe how the reward per
episode increases with the number of episodes.

4https://youtu.be/i5mBqr2pW6c

8

Figure 9: Frames of steps extracted from a successful episode of an agent moving to the light using the
RL model.

Figure 10: Reward learning curve of the single RL
agent for going to the light.

We observe that this increasing trend seems
to achieve a horizontal asymptote and hence
its maximal value around episode 80. For
this reason, we could say that convergence has
been achieved.

Reward = −distance robot light2 (1)

4.3 Single robot transport

As was mentioned before, the approach we
took in this paper was to first train an RL
model to control a single robot to move the
box to the target source of light, and then we
will fine-tune it for a swarm of robots. In this
section, we trained the model for the single
robot to move the box.

Ideal Reward = −(distance box light2) (2)

The ideal reward would be (2). The reason
is that in this reward we are clearly specify-
ing what’s the goal of this task, which is to
move the box to the source of light and we are
not enforcing any other constraints. Further-
more, since this is a step reward, meaning that
at each step this reward will be recomputed.
Hence, when maximizing the reward function
of the model will also force the robot to do it
in the less time possible since these rewards
accumulate throughout the episode.

Actual Reward = −(distance robot box2

+ distance box light2)

(3)

Unfortunately, when using this reward, the
model did not manage to learn any working
policy with the limited computing resources
we had available. Another reason is that given
the high dimensionality of the possible number
of paths that did not lead to the box the robot
was not even able to arrive to move the box.
Hence, we had to do some reward shaping and
the final reward function was (3).

9

Figure 11: Frames of steps extracted from a successful individual transport episode using the RL model.

Figure 12: Reward learning curve of the single RL
agent for individual transport.

Using this reward function we did man-
age to learn a good policy. We observe in
Figure 12, the reward keeps increasing and
stabilizes around episode 90. Furthermore,
around episode 80 we can observe a curious
phenomenon. Before this episode, the robot
manages to learn a policy to move the box to
the light, but at some point, it runs over the
target light and continues to push the box fur-
ther away from it without ever stopping. In
the following episodes, the model does learn to
stop pushing the box once the light is observed
and this is the behavior seen in the video5 and
Figure 11.

4.4 Collective transport

Finally, the last experiment consisted in train-
ing a model that allowed a robot swarm to
perform collective transport. As we explained
earlier, the way we approached it was that we
first trained an RL model that would solve the
task of collective transport, and then we fine-
tuned it for performing collective transport in
a robot swarm. The result can be seen in the
video6 and in Figure 13.

That is exactly what we did, we reused the
model learned from the section before and re-
trained it in a robot swarm made of 3 robots.
The way we trained this model was by hav-
ing a common model that would learn from
the actions taken by all of the robots but that
would make its decisions based solely on the
observed state by each robot independently.
Having such a model will allow having a robot
swarm with a decentralized model, meaning
that no central coordinator will be needed and
all robots will be able to behave independently.

We reused the same reward function as in
the section before (3), where the total episodic
reward corresponds to the sum over all of the
local rewards from each robot (4).

5https://youtu.be/3wF8eM2zTHY
6https://youtu.be/2RE˙2JDM-kY

10

Figure 13: Frames of steps extracted from a successful individual transport episode using the RL model.

Figure 14: Reward learning curve of the multiple
RL agent for collective transport.

General Reward=−
∑
i

distance robot box2i

+ distance box light2i
(4)

The curve of the reward while training this
model can be seen in Figure 14. We have mul-
tiple observations. First, there is a big drop
in performance around episode 60. However,
this drop in performance is recovered later.
Furthermore, we observe that the reward ob-
tained by the agents at the beginning and at
the end is very similar, hence we could say
that unfortunately there was not much learn-
ing. However, we believe that there was in-
deed some training since the variance in the
reward over the episodes is reduced with more
episodes which is a good sign of the model

learning. Moreover, despite this issue, we are
optimistic about what this model can achieve
since collective transport is successful as seen
in Figure 13.

Furthermore, it is very hard to learn a sim-
ple Reinforcement Learning model in a multi-
agent setting. The reason being that at each
episode step, all robots will act, hence, the re-
ward will probably be affected by the action
of other robots. This means that there will
be some stochasticity in the reward since now
the reward function seen by each robot is not
deterministic anymore, but it also depends on
the actions of the rest of the robots. Moreover,
the DDPG algorithm does not handle prop-
erly this stochasticity in the reward function.
For this reason, we should, as future steps, im-
plement a proper Multi-Agent Reinforcement
Learning algorithm as the ones presented by
Zhang et al [10].

Finally, during some of the episodes, we ob-
served collisions between robots, which is not
desirable if we want to deploy this model in the
real world with real hardware. One of the so-
lutions we could deploy to solve this is to add
a factor in the reward that penalizes being too
close to other robots, similarly as what is done
for flocking algorithms [8]. We could also hard
code it outside of the model, meaning that af-

11

ter getting the action from the model, we will
evaluate if this will lead to a collision between
robots and if it is the case we will instead ex-
ecute an action that prevents this to happen.

5 Conclusion

In this paper, we accomplished our goal, we
have a Reinforcement Learning model that
controls a robot swarm in a decentralized man-
ner to perform collective transport. The way
we achieved this, was by first training an RL
model that would control a single robot to per-
form collective transport, and then we fine-
tuned it to generalize for a robot swarm.

Moreover, watching many experiments of
these robots we observed that the optimal
learned policy seems to be also based on the
occluded area paradigm. The reason we be-
lieve this is because when looking at the swarm
experiments we observe that when one of the
robots is over the light (which then becomes
occluded for the rest of the robots), the rest of
the robots continue pushing the box, and they
just stop once the first robot stops occluding
the light.

This does not mean that the occluded
paradigm is the best algorithm for collective
transport, however, it probably means it is the
best algorithm for collective transport given
the environment we designed and the sensors
used by the robots. Hence, to find even better
policies we will have to equip robots with dif-
ferent types of sensors and have more diversity
of environments to train them on.

6 Future Work

There are some next steps that would be great
to have first. It would be interesting to train
models that generalize for different shapes of
the object, for example, cylindrical shape. The
way we believe this can be achieved is by incor-
porating some randomness in the shapes of the
object during the training process. Further-
more, we would like that our models accom-
plish harder tasks for which human-designed
algorithms do not work well. For example,
we were thinking about adding obstacles to
make the environment harder and other-robot
awareness to enhance robot collaboration.

Continuing by some longer-term goals, we
consider that this project was successful since

we managed to build an algorithm that
presents a collaborative behavior among the
agents and successfully transports the object.
Despite this, the observed behavior is still far
from the one observed in the ant colonies.
One of the reasons is the capabilities of these
robots. These are very limited and in this case,
the robots are just pushing the object. We be-
lieve a future step should be to empower these
robots with more capabilities. A great im-
provement would be to have the robots pull
up the object. We foresee that this capa-
bility would allow collaboration, where some
robots would pull up the object and some
other robots, would go below this one. This
would improve the performance in this task in
multiple ways, first, more robots would be able
to move the object at the same time which al-
lows a bigger object to be moved. Second, if
the object is pulled up, then this is not touch-
ing the ground hence removing the friction fac-
tor which will also allow moving the objects in
different types of terrain and not just the ideal
case scenario with very little friction. More-
over, if the robots could elevate the object, it
would mean that they would be able to inter-
act and transport the object in a much com-
plex topology of the terrain, for example, we
can imagine that these robots would be able
to move an object up the stairs. It is impres-
sive that, with such a simple addition to the
robots, so many new behaviors could arise and
how much this would improve the overall per-
formance of the swarm. For this reason, we are
very excited since if these future steps are at-
tained, it will offer a new path to having robot
swarms executing transportation and perform-
ing many different tasks in complex environ-
ments. Finally, we will be really able to say
that our goal was fully achieved when we man-
age to train a model for a task for which there
is no human-designed algorithm that manages
to complete it successfully.

References

[1] M. Bonani, V. Longchamp, S. Magnenat,
P. Rétornaz, D. Burnier, G. Roulet, F. Vaussard,
H. Bleuler, and F. Mondada. The marxbot, a
miniature mobile robot opening new perspec-
tives for the collective-robotic research. In 2010
IEEE/RSJ International Conference on Intel-

12

ligent Robots and Systems, pages 4187–4193,
2010.

[2] D. S. Catherman, C. Neville, J. Bloom, and
S. S. White. Reinforcement learning adversarial
swarm dynamics. In 2020 SoutheastCon, pages
1–6, 2020.

[3] F. Chollet et al. Keras, 2015.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforce-
ment learning, 2019.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning,
2013.

[6] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini,
A. Brutschy, M. Brambilla, N. Mathews, E. Fer-
rante, G. D. Caro, F. Ducatelle, T. Stir-
ling, A. Gutiérrez, L. M. Gambardella, and
M. Dorigo. ARGoS: a modular, multi-engine
simulator for heterogeneous swarm robotics.
In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS 2011), pages 5027–5034. IEEE Computer
Society Press, Los Alamitos, CA, September
2011.

[7] D. Silver, T. Hubert, J. Schrittwieser,
I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap,
K. Simonyan, and D. Hassabis. A general
reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[8] H. Tanner, A. Jadbabaie, and G. Pappas. Sta-
ble flocking of mobile agents, part ii: Dynamic
topology. Departmental Papers (ESE), 2, 05
2003.

[9] O. Vinyals, I. Babuschkin, W. M. Czarnecki,
M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh,
D. Horgan, M. Kroiss, I. Danihelka, A. Huang,
L. Sifre, T. Cai, J. P. Agapiou, M. Jader-
berg, A. S. Vezhnevets, R. Leblond, T. Pohlen,
V. Dalibard, D. Budden, Y. Sulsky, J. Molloy,
T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff,
Y. Wu, R. Ring, D. Yogatama, D. Wünsch,
K. McKinney, O. Smith, T. Schaul, T. Lilli-
crap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Na-
ture, 575(7782):350–354, 2019.

[10] K. Zhang, Z. Yang, and T. Başar. Multi-agent
reinforcement learning: A selective overview of
theories and algorithms, 2021.

13

